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Rigorous near- to far-field transformation for
vectorial diffraction calculations

and its numerical implementation
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A rigorous method for transforming an electromagnetic near-field distribution to the far field is presented. We
start by deriving a set of self-consistent integral equations that can be used to represent the electromagnetic
field rigorously everywhere in homogeneous space apart from the closed interior of a volume encompassing all
charges and sinks. The representation is derived by imposing a condition analogous to Sommerfeld’s radiation
condition. We then examine the accuracy of our numerical implementation of the formula, also on a parallel
computer cluster, by comparing the results with a case when the analytical solution is also available. Finally,
an application example is shown for a nonanalytical case. © 2006 Optical Society of America
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. INTRODUCTION
ince the publication of the now famous paper by Stratton
nd Chu,1 a number of papers have been published that
hose the Stratton–Chu integral as starting point.2–6

owever, most of these works concentrated on diffraction
nd/or focusing problems. The Stratton–Chu formula has
een derived for the specific case when all the sources of
lectromagnetic radiation are situated outside a closed
olume. It then provides a rigorous solution for the
oundary value problem when the field on the surface of
he volume is known and one seeks to determine the
alue of the field within the volume.

In computational electromagnetics one frequently faces
he problem of having to calculate the field in a rigorous
anner either far from the object that causes scattering

r on a surface that is much larger in lateral dimensions
han the wavelength. In certain specific cases it is pos-
ible to obtain analytical solutions so that the above prob-
em does not occur. However, in numerical methods, such
s the finite difference time domain (FDTD)7 method or
he finite element method (FEM),8 this is not possible
ven if a supercomputer is used, due to memory and com-
utational time restrictions.
When numerical methods are used to solve a problem,

oth the electric and magnetic fields are usually known
ither anywhere within a volume or on the closed surface
f it, and one faces the task of propagating this field to an
rbitrary position in space. Since the Stratton–Chu for-
ula is an exact representation, it would in principle be

ossible to use it to obtain the field from the numerical
ata. However, since one is required to integrate the field
1084-7529/06/030713-10/$15.00 © 2
n a closed surface, the Stratton–Chu formula is not di-
ectly applicable. Hence one needs to find an alternative
epresentation when the integration may be carried out
ver the closed surface encompassing all sources of elec-
romagnetic radiation.

In this paper we first derive such a formula. We then
se numerical integration to demonstrate the usefulness
f the results. Finally, the conclusions are drawn. Note
hat throughout this paper the exp�−i�t� sign convention
nd the SI system are used.
It is important to point out that even though we refer to

ur method as “near- to far-field transformation,” the so-
ution equally applies to propagation to near and interme-
iate fields. Conversely, the “usual” transformation used
n conjunction with the FDTD method7 is strictly a near-
o far-field transform, where the necessary approxima-
ions have been made to the surface integrals.

. THEORY
onsider a volume V with its closed boundary S. M�r�
nd N�r� are two vector functions that are, together with
heir first derivatives, continuous on S and within V, and
= �x ,y ,z�. From the divergence theorem of Gauss we
ave

�� �
V

� · BdV =�
S

B · m̂dS, �1�

here B�r� is any well-behaved vector function and m̂ is
006 Optical Society of America
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he outward surface normal. With the substitution B

M� ���N� one obtains

� �
V

� · �M � �� � N��dV =�
S

�M � �� � N�� · m̂dS.

�2�

his yields the vector analog of Green’s first identity:

� �
V

��� � M� · �� � N� − M · � � �� � N��dV

=�
S

�M � �� � N�� · m̂dS. �3�

f we now interchange M and N in Eq. (3) and subtract
he resulting equation from Eq. (3), we obtain

� �
V

�N · � � �� � M� − M · � � �� � N��dV

=�
S

�M � �� � N� − N � �� � M�� · m̂dS, �4�

hich is the vector analog of Green’s second identity.
hese two integral theorems will be the basis of further
erivation. Let us assume that the homogeneous and iso-
ropic medium filling V is nonconducting and that it con-
ains no charge or current within its interior. We now set1

=E and N=Ga in Eq. (4) where E represents the elec-
ric field, G is the scalar function required to satisfy the
calar wave equation on and within S, and a is an arbi-
rary constant unit vector. If we substitute for M and N

n the left hand side of Eq. (4), the kernel of the integral
eads as

a · �� � �� � E�� − E · �� � �� � �Ga���

= k2Ga · E − E · �k2Ga + ��a · �G��

= − E · ���a · �G�� = − � · ��a · �G�E�,

ith k being the wavenumber and where we used that
·E=0. Hence the left hand side of Eq. (4) now reads as

−�� �
V

� · ��a · �G�E�dV = − a ·�
S

�E · m̂� � GdS,

�5�

hich follows from the divergence theorem [Eq. (1)]. The
rst and the second terms on the right hand side inte-
rand of Eq. (4) give

�E � ��G � a�� · m̂ = a · ��G � �E � m̂��, �6�

�Ga � �� � E�� · m̂ = a · ��� � E� � m̂�G

= i��a · �H � m̂�G, �7�

here we have used Maxwell’s equation to relate E and
. It is seen that a is a factor common to all terms in Eqs.

5)–(7). Hence, if the results are gathered from these ex-
ressions and substituted into Eq. (4), then, as a is arbi-
rary, it is a straightforward matter to write
�
S

�i���m̂ � H�G + �m̂ � E� � �G + �m̂ · E� � G�dS = 0.

�8�

Hitherto we introduced the function G and required
hat it be a solution of the scalar wave equation. For prac-
ical cases we set G to be the free-space Green’s function:

G =
exp�ikr�

r
, �9a�

here

r = 	rs − rp	 = 
�x − xp�2 + �y − yp�2 + �z − zp�2, �9b�

ith rs= �x ,y ,z� being the coordinates of an infinitesimal
urface element dS on S and rp= �xp ,yp ,zp� being the
fixed) observation point (see Fig. 1).

It has been assumed for the derivation of Eq. (4) that
oth M and N are continuous and that V is homoge-
eous. As clearly shown by Eq. (9a), we encounter a sin-
ularity in G for r=0, i.e., when the observation point co-
ncides with the boundary. Furthermore, there must be
ources of electromagnetic radiation located somewhere
n space to give rise to diffraction. Thus particular atten-
ion needs to be paid to the definition of S. Let us first
hift the origin of the Cartesian coordinate system to P
nd circumscribe the point P by a small sphere of surface
i and radius �, as shown in Fig. 2. Note that due to the

inearity of Maxwell’s equations the choice of the origin of
he coordinate system is arbitrary. We also circumscribe
ll sources and sinks in space by a volume Siii. Let us now
onstruct a large spherical surface Sv, centered on P, of
adius � and connect Si and Siii by a small diameter tube
f surface Sii and Siii and Sv by another small diameter
ube of surface Siv. The original surface S is now made up
f elementary surfaces Si , . . . ,Sv resulting in a piecewise
mooth orientable and simply connected surface. The
riginally outward normal m̂ of S is now an inward nor-

ig. 1. Geometry of the problem showing the closed surface of
he integration, the surface normal, the integral surface element,
nd the observation point.
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al for Si , . . . ,Siv and an outward normal for Sv. Conse-
uently, we have from Eq. (8) that

� �
Si

�¯�dSi +� �
Sii

�¯�dSii +� �
Siii

�¯�dSiii

+� �
Siv

�¯�dSiv +� �
Sv

�¯�dSv = 0. �10�

f the diameters of tubes Sii and Siv are made infinitesi-
ally small, then the contribution from these surfaces be-

omes vanishingly small; hence we may write

−�
Si

�¯�dSi −�
Siii

�¯�dSiii +�
Sv

�¯�dSv = 0, �11�

oting that now the integrals are again closed because Si,
iii, and Sv are separate closed surfaces. Also note that

he signs of the first and second terms have been changed,
o that for all surfaces m̂ is an outward normal. We first
oncentrate on the integration performed over Si. If we re-
er to Figs. 1 and 2, it is clear that, since the sphere was
ircumscribed about P, r̂=m̂. Whence for Si we have

−�
Si
�i���m̂ � H�G + G�ik −

1

r
�m̂ � E� � m̂

+ G�ik −
1

r
�m̂ · E�m̂�dSi. �12�

ince, on the surface Si, dSi=�2d�, with � being a solid
ngle, Eq. (12) gives the following for a vanishing radius:

lim
�→0

−�
�

�i���m̂ � H�
exp�ikr�

r

+ E
exp�ikr�

r �ik −
1

r
�
r=�

�2d� = 4�E. �13�

e now turn to discuss the integral over Sv. In a manner

ig. 2. Closed surface of integration for the first version of the
tratton–Chu formula.
imilar to that before, we have

�
Sv
�i���m̂ � H�

exp�ikr�

r
+ E

exp�ikr�

r �ik −
1

r
�dSv

=�
Sv
��m̂ � �� � E� + ikE�

1

r
− E

1

r2�exp�ikr�dSv,

�14�

hich can be written for integration over the solid angle
as

�
�

��m̂ � �� � E� + ikE�r − E�exp�ikr�d�

=� �
�

��r � �� � E� + ikrE� − E�exp�ikr�d�, �15�

ith the function values taken on the surface of the
phere.

Because the surface Sv limits the volume within which
ur calculation of the electromagnetic field is valid, we
ould like to extend this volume such that it encompasses

he entire space, that is, r→�. Since Siii is a surface en-
ompassing all sources and sinks of electromagnetic ra-
iation and the surface Sv is merely a mathematical con-
truction, it is not physically tenable to expect its
resence to perturb the field at P. Consequently, as �→�,
he contribution of Eq. (15) to Eq. (11) should be vanish-
ngly small. For this to happen we must have

	rE	 	 K, �16a�

r � �� � E� + ikrE → 0 �16b�

s r→�, with K being an arbitrary finite constant. The
onditions given by relations (16) shall be termed the vec-
orial radiation condition in analogy to the scalar radia-
ion condition of Sommerfeld.9 Note that the second con-
ition is identical to that of Nédélec.10

After substituting from Eq. (13) into Eq. (11), Eq. (8)
he electric field is given on the open exterior of Siii by

E�xp,yp,zp� =
1

4�
�

Siii
�i���m̂ � H�G + �m̂ � E� � �G

+ �m̂ · E� � G�dSiii. �17a�

ue to the symmetry of Maxwell’s equations the substitu-
ion E→�H and H→−�E yields the following for the
agnetic field:

H�xp,yp,zp� = −
1

4�
�

Siii
�i���m̂ � E�G − �m̂ � H� � �G

− �m̂ · H� � G�dSiii. �17b�

This formula is different from that published in the
iterature,1,11 where workers defined the problem slightly
ifferently, as we shall now discuss.
Consider the volume shown in Fig. 3. The surface S is

ow being put together as the surface of the sphere sur-
ounding the point of observation P, denoted by Si; the
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mall diameter tube of surface Sii; and, finally, the surface
f the outer shell Siii. Since the volume where the integral
s valid is the exterior of Si and Sii and the interior of Siii,
ll sources and sinks must be located outside this surface.
he contribution from surface Sii vanishes as the diam-
ter of the tube is made zero, and the contribution from Si

s just 4�E as before. Consequently, the electric field is
iven, within the closed interior of Siii, by

E�xp,yp,zp� = −
1

4�
�

Siii
�i���m̂ � H�G + �m̂ � E� � �G

+ �m̂ · E� � G�dSiii, �18a�

nd the expression for the magnetic field is given by

H�xp,yp,zp� =
1

4�
�

Siii
�i���m̂ � E�G − �m̂ � H� � �G

− �m̂ · H� � G�dSiii. �18b�

quations (18) are usually referred to as the Stratton–
hu integral theorem.
On comparing Eqs. (17) and (18), we initially note a

ign difference for both the electric and magnetic fields.
n closer inspection we note that there is also a difference

n the surface over which the integration is performed. In
qs. (18) the surface encompasses a source- and sink-free
olume of space, and m̂ is the outward surface normal.
he point of observation P is inside the volume. In the
ase of Eq. (17) the surface Siii encompasses all sources
nd sinks in space, and m̂ is an outward normal. The
oint of observation is outside the enclosed volume. Con-
equently, we recognize that Eqs. (17) and (18) are solu-
ions of two different problems. Appendix A contains a
roof showing that Eqs. (17) and (18) are exact solutions
f Maxwell’s equations. The solution is unique, which fol-
ows from the fact that Maxwell’s equations lead to a
nique solution for a given set of boundary conditions.
In conclusion, Eqs. (18) are a unique, self-consistent,

nd rigorous solution of Maxwell’s equations for the elec-
ric and magnetic field at a point within any closed sur-
ace S bounding a charge- and current-free, homogeneous,
nd isotropic volume. Also, Eqs. (17) are a unique, self-
onsistent, and rigorous solution of Maxwell’s equations

ig. 3. Closed surface of integration for the second version of
he Stratton–Chu formula.
or the electric and magnetic field at any exterior point of
closed surface bounding all sources and sinks. It can

lso be shown,12 though it is well outside the scope of this
aper, that this integral can be the basis for deriving
ther, well-known diffraction theories.

. PRACTICAL USE OF THE
TRATTON–CHU THEORY
hen seeking the solution of an electromagnetic scatter-

ng or diffraction problem by means of an arbitrary
haped object, it is, in general, necessary to employ a rig-
rous numerical method. This is because it is very diffi-
ult to analytically solve Maxwell’s equations in arbitrary
nhomogeneous regions with even the simplest of bound-
ry conditions. Numerical methods such as the FDTD
echnique and the FEM are commonly used for this pur-
ose. These methods, however, use computer memory pro-
ortional to the volume of the computational space being
nalyzed. It is thus often impossible to include far-field
egions in the computational space. If, however, a numeri-
al method is used to calculate the field on a boundary
urrounding the scatterer, the field anywhere outside the
oundary may be found by applying the Stratton–Chu in-
egral [Eqs. (17)].

There are other methods of obtaining the far field from
ear-field data. However, as stated at the end of Section 2,
he other major vectorial diffraction theories such as the
ectorial integral theorem of Kirchhoff and the vectorial
ayleigh–Sommerfeld theory may be obtained from the
tratton–Chu integral.12 Thus the Stratton–Chu integral

s if anything more general than the other theories and is
ell suited to our application.

. Numerical Implementation of the Stratton–Chu
ntegral
ince the near-field data are known numerically, the
tratton–Chu integral must be evaluated numerically.
he surface of integration and associated complex ampli-

udes are defined by using a mesh of triangles. Such a
esh is represented by a set of vertices V= �rs,i
�rs,i

1 ,rs,i
2 ,rs,i

3 ��R3�, a set of facets F= ��vi
1 ,vi

2 ,vi
3��N3 ,1

vi
j 
Nv�, where Nv is the number of vertices, and two

ets of complex amplitudes E= �Ei= �ei
1 ,ei

2 ,ei
3��C3� and

= �Hi= �hi
1 ,hi

2 ,hi
3��C3�. Each element of each triple in F

s an index into V, E, and H. In this way each triangle is
onstructed from three vertices, and the field at each ver-
ex is also known. The orientation of the surface is stored
ccording to the order in which the facet indices are
tored. Such a representation minimizes computer stor-
ge and provides an efficient way to traverse the surface.
his representation can be used to represent any polyhe-
ral surface and so is very general.
Integration is performed over each facet, and the re-

ults summed to give the final result. Gaussian quadra-
ure is commonly used for integration over a triangle. In
eneral, a high order Gaussian quadrature would be em-
loyed to improve integration accuracy. However, since
he field is known only at the triangle vertices, only first
rder Gaussian quadrature may be employed. The first
rder scheme provides an exact result if the integral ker-
el varies no worse than a polynomial of first order.13 This
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s why it is important to use a fine mesh to represent the
losed surface of integration.

By employing first order Gaussian quadrature integra-
ion, we may evaluate the Stratton–Chu integrals accord-
ng to

U�rp� = �
i=1

Nfacets �1

3�
j=1

3

I�rp,m̂i,rs,vi
j,Evi

j,Hvi
j��i� , �19�

here U is the field of interest, Nfacets is the number of
acets, I is the kernel of the integral being evaluated, rp
�xp ,yp ,zp� is the observation point, m̂i is the surface nor-
al of facet i, rs,vi

j is the jth vertex of facet i, Evi
j is the

omplex electric field at the jth vertex of facet i, Hvi
j is the

omplex magnetic field at the jth vertex of facet i, and �i
s the area of facet i.

. Parallel Implementation of the Stratton–Chu Integral
he numerical evaluation of the Stratton–Chu integral at
number of observation points is quite a computationally

ntensive task. This is because the argument of the
reen’s function and its gradient is dependent on both the
bservation point and surface coordinates. Thus the
reen’s function and its gradient must be evaluated for
very pairing of observation and surface points. To speed
p computation time, the program is implemented in
arallel.
The message passing interface is used as the basis for

nterprocess communication. The program is parallelized
y dividing up the set of observation points where the
eld is to be calculated. Each processor then calculates
he field at a subset of observation points. The program
uns on our 36 processor Beowulf cluster.

. EXAMPLES AND ANALYSIS
. Accuracy of Implementation
he implementation of the Stratton–Chu integral was
ested by using the field due to a harmonically oscillating
ipole as a test field. This was done by first calculating
he field on a test surface surrounding the dipole. This
eld was then used as the input to the Stratton–Chu pro-
ram to evaluate the field at a test plane some distance
rom the test surface. The field at the test plane was then
ompared with the field obtained analytically.

The electromagnetic field at point rn̂ due to a harmoni-
ally oscillating dipole with moment p, situated at the ori-
in, may be calculated according to14

H =
ck2

4�
�n̂ � p�

exp�ikr�

r �1 −
1

ikr
 ,

E =
1

4��0
�k2�n̂ � p� � n̂

exp�ikr�

r

+ �3n̂�n̂ · p� − p�� 1

r3 −
ik

r2
exp�ikr�� , �20�

here n̂ is a unit vector directed from the dipole to the
oint of observation and r is the distance from the dipole
o the point of observation.
A z-polarized dipole situated at the origin and radiating
t wavelength �=632.8 nm was used in all tests. A regu-
ar triangular mesh fitted to the surface of a cube, cen-
ered on the origin and of side 2�, was used as the closed
urface of integration.

An aggregate error metric was defined to measure the
ccuracy of the Stratton–Chu integral. This results in a
easure of relative error that does not produce the spu-

ious results that some pointwise relative error measures
roduce. It also has the added advantage of producing
nly a single error value, thus making it useful for com-
arison purposes. The aggregate error metric is thus de-
ned as

�U =
�
i=1

N

	USC�ri� − UAn�ri�	2

�
i=1

N

	UAn�ri�	2
, �21�

here U can represent either the electric field E or the
agnetic field H, N is the number of observation points,
An is the field calculated analytically with Eqs. (20), USC

s the field calculated with the Stratton–Chu integral
Eqs. (17)], and ri is the ith point on the test plane where
he field was calculated.

The first test examined the dependence of error on the
ensity of the mesh used to represent the closed surface of
ntegration. This was performed by using the Stratton–
hu integral [Eqs. (17)] to propagate the dipole field from
series of test surfaces with increasingly dense meshes to
fixed test plane. The test plane was parallel to the xy

lane and situated at 200� along the z axis. It had dimen-
ion 4000��4000� so as to contain the majority of the di-
ole field pattern. The vertex spacing on the surface of the
ntegration mesh was varied from � /1 to � /40. The mesh
as constructed by first partitioning each cube face of the

ntegration surface into a minimal number of squares of
he desired vertex spacing. Each square was then divided
nto two right angled isosceles triangles. Vertex spacing is
efined as the length of the side of the squares.
Figure 4 shows a plot of aggregate error versus mesh

ig. 4. (Color online) Graph showing aggregate error versus
esh density for a single dipole scatterer.
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ensity for E and H. Unsurprisingly, the error reduces as
he vertex spacing is reduced. For large vertex spacing
he error is unacceptably high; however, it improves rap-
dly as the vertex spacing reduces. In fact, as shown on
he plot, the error follows approximately a (vertex
pacing)4 relationship. The appropriate vertex spacing de-
ends very much on the application. For example, when
he field data for the closed surface of integration are cal-
ulated with a rigorous numerical method, they will al-
eady have an error associated with them attributable to
he numerical method. The vertex spacing should thus be
hosen to result in error less than that of the numerical
ethod.
Numerical methods require grid spacing to be kept be-

ow a certain upper limit in order to obtain accurate re-
ults. The Stratton–Chu surface is obtained directly from
ample points on the boundary of the grid of the numeri-
al method. Thus the grid spacing of the numerical
ethod determines the vertex spacing of the Stratton–
hu surface. This is, in general, � /20 or finer if the FDTD
ethod is used to compute the near field. At this vertex

pacing the error associated with the Stratton–Chu inte-
ral is likely to be less than that due to the FDTD
ethod. Thus the Stratton–Chu integral is well suited for

ropagating fields obtained from numerical calculations.
The second test examined the dependence of error on

istance between the dipole and test plane. The test sur-
ace from the mesh density error calculation with mesh
ertex spacing of � /20 was reused for this calculation.
he test plane was again parallel to the xy plane; how-
ver, its position was varied along the z axis. The dimen-
ions of the test plane were altered proportionately with
he plane’s position along the z axis such that each vertex
etained its relative position within the field distribution.
his ensures that the aggregate error measures between
wo plane positions are comparable. The distance along
he z axis from the dipole to the observation plane was
aried from 1� to 1000� in order to test the efficacy of the
tratton–Chu integral as a near to far-field transform.
he results of this test are shown in Fig. 5; note, however,

ig. 5. (Color online) Graph showing aggregate error versus
ropagation distance for a single dipole scatterer when a vertex
pacing of � /20 is used.
hat the axes have been truncated to a maximum propa-
ation distance of 400�, as the error remains constant for
reater propagation distances.

Figure 5 shows that the aggregate errors for the elec-
ric and magnetic fields differ slightly, as is also evident in
ig. 4. Note, however, that this difference is very small
nd is most probably due to the differing complexity of the
ipole field components. The most important feature of
ig. 5 is that the error reduces rapidly as the propagation
istance increases into the far-field region. This is to be
xpected, as the field becomes smoother and better be-
aved in the far field. Furthermore, it may be shown that
he change in r, the argument of the Green’s function, due
o a small change in the x surface coordinate is given by

�r �
x − xp

r
�x, �22�

here the result is identical for the y and z coordinates.
hus, as the propagation distance increases, the phase
nd amplitude of the Green’s function vary more slowly as
function of the surface coordinates. It is thus to be ex-

ected that the aggregate error diminishes with propaga-
ion distance.

. Diffraction by Three Spheres
s a practical example we consider calculating the far-
eld diffraction pattern of a complex object for which the
cattered field cannot be calculated analytically in a
imple manner: a collection of three perfectly conducting
pheres, each 0.405 �m in diameter located in the plane
=0 (Fig. 6). A linearly polarized plane wave, traveling in
he positive z direction, is incident on the spheres. Sup-
ose that we wish to know the scattered field at a plane
ntersecting the negative z axis a long way from the
pheres for both x- and y-polarized incident plane waves.

The field scattered by the spheres can be calculated
outinely with the FDTD method. However, even on pow-
rful workstations this technique could not be used to cal-

ig. 6. (Color online) Diagram showing the position of the three
pheres in the plane z=0.
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ulate the field beyond about ten wavelengths from the
pheres. On supercomputers it may be possible to go as
ar as over 100 wavelengths, but this would require a very
xpensive machine. Conversely, the first version of the
tratton–Chu integral theorem [Eqs. (17)] can be run on a
edium-sized workstation and is perfectly suited to such
problem, as it may be used to calculate the field at ar-

itrarily large distances from the spheres by using the
DTD data.
To illustrate how this can be done, we first show the in-

ensity as given by the FDTD method on the surface that
urrounded the computational volume in Fig. 7 for �
405 nm. The FDTD method produced these results on a
ube of side 2.5� meshed by using a triangular mesh of
20,000 facets and 60,002 vertices. The vertex spacing
as � /40. Then the Stratton–Chu integral is employed,
nd the resulting intensity distribution in the plane
=−2 m is shown in Fig. 8 for x- and y-polarized incident
lane waves.
These results show that even in the far field there are

ifferences in the diffraction pattern caused by the polar-
zation of the incident wave. The true value of this ex-
mple is that it demonstrates how, with the scattered
eld stored on a surface enclosing the scatterer, the field
nywhere outside that surface can be calculated in a
emory- and time-efficient manner. The practical benefit

f this is that it allows numerical modeling of scatterers
ithout needing to worry about where the field should be
ropagated to. It would be very inefficient and in many
ases impossible to, for example, rerun an FDTD simula-
ion simply to propagate the scattered field further than
as originally done.

. Parallel Implementation of the Stratton–Chu Integral
o assess the time saving due to parallelization, we ran a
alculation, encountered frequently when modeling the

ig. 7. Intensity of the electric field scattered by three spheres
n the FDTD surface for x- (top) and y- (lower) polarized incident
aves. Images have been individually normalized.
eadout of optical disks, many times by using an increas-
ng number of processors. In this calculation the
tratton–Chu integral was used to evaluate the scattered
eld on a square of width 4 �m positioned 253 nm (one
avelength in plastic with refractive index 1.6) from the
ata layer of the disk. A uniform grid of 4624 observation
oints was constructed on this square. The closed surface
f integration, on which the field was determined by the
DTD method, was composed of a mesh of 195,072 facets
nd 97,538 vertices. The vertex spacing was � /40.
This calculation was performed 36 times, initially by

sing a single processor and finally by using 36 proces-
ors. Results are shown in Fig. 9. Results have been pre-
ented in two different ways. The upper plot in Fig. 9
hows the total time taken to evaluate the field at all ob-
ervation points on the grid. This may be considered the
eal time required to complete the simulation. This plot
hows that, as expected, significant time can be saved by
mploying more processors. The lower plot shows the to-
al processor time per observation point evaluated, taking
nto account the number of processors employed. This plot
s of more interest, as it shows the penalty associated
ith using additional processors. This penalty is caused
y the additional initialization and communication that
esults from using more processors. In the absence of such
penalty one would expect the lower plot in Fig. 9 to be

orizontal.
A linear trend line has been fitted to the data and re-

eals that the penalty is approximately 10−4 s per obser-
ation point per processor. Note that the plot exhibits ap-
arently random variations often associated with
enchmarking measurements. Thus, of the 151.4 s re-
uired to perform the calculation on 36 processors, just

ig. 8. Intensity of scattered field in the plane z=−2 m for (a)
-polarized incident waves and (b) y-polarized incident waves.
mages have been individually normalized.
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nder 17 s (or 11%) of this was consumed by additional
nitialization and communication. Although we have only
6 processors, it is of interest to know at what number of
rocessors the total computation time will begin to rise. If
t is assumed that the penalty per processor remains con-
tant, the total time to complete a simulation can be ap-
roximated as

T�N� = T1/N + Ntp, �23�

here T1+ tp is the time taken to complete the calculation
n a single processor, N is the number of processors, and
p is the penalty per processor. Assuming a value for tp of
0−4�4624=0.4624, this T is plotted in Fig. 10. The turn-
ng point of the plot occurs at approximately N=108 pro-
essors. It should be noted that this result depends on the
pecific simulation being run and is quite approximate
ue to the nature of measuring code execution time. This
esult does reveal, however, that for this typical simula-
ion there is little point in exceeding approximately 100
rocessors.

ig. 10. (Color online) Theoretical prediction for the total execu-
ion time as a function of the number of processors employed.

ig. 9. Timing data for parallel implementation of the Stratton–
hu code. The upper plot shows total execution time as a func-

ion of the number of processors, and the lower plot shows the
verage total amount of processor time per observation point as a
unction of the number of processors employed.
Without parallelization, evaluation of such problems
ould become prohibitively time consuming. For ex-
mple, we need to perform 42 of these typical calculations
n order to analyze a portion of a single track on an optical
isk. On a single processor this would take over 63 h. Us-
ng 36 processors requires only 1.8 h. We need to simulate

any of these tracks, so, given the often iterative nature
f such simulation, parallelization of this problem is
ssential.

. CONCLUSIONS
his paper presented a rigorous method for transforming

he near field of an electromagnetic distribution to the far
eld. We derived a set of self-consistent integral equa-
ions that were used to represent the electromagnetic
eld rigorously everywhere in a homogeneous space apart
rom the closed interior of a volume encompassing all
harges and sinks. The representation was derived by im-
osing a condition analogous to Sommerfeld’s radiation
ondition that we termed the vectorial radiation
ondition.

We examined the accuracy of our numerical implemen-
ation of the formula, also on a parallel computer cluster,
y comparing the results with a problem when the ana-
ytical solution is known. We have found that the aggre-
ate computational error decreases with increasing dis-
ance between the volume and the observation point. We
lso have found that in the case of our parallel computer
luster there is an optimum number of processors beyond
hich, due to interprocessor communication latency, the

ime it takes to evaluate the integral is longer than it is
ith fewer processors.
Our basic equation is of fundamental relevance in

lectromagnetic propagation, and the numerical
mplementation will find applications in computational
lectromagnetism.

PPENDIX A
ow we discuss how Eqs. (18) are a rigorous solution of
axwell’s equation. It trivially follows that Eqs. (17) and

lso a solution of Maxwell’s equations. First, we introduce
he notation �p to distinguish the vector differential op-
rator acting on the observation point P from the one, �,
cting on the surface and use S to denote the closed sur-
ace of integration for simplicity. We have to show that (i)
p ·E=0 and (ii) �p�H=−i��E. Let us start with (i):

4��p · E = − i���
S

�p · ��m̂ � H�G�dS −�
S

�p · ��m̂ � E�

� �G�dS −�
S

�p · ��m̂ · E� � G�dS. �A1�

he first integral can be rewritten to give
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i���
S

�p · ��m̂ � H�G�dS

= − i���
S

��p · �m̂ � H��GdS

− i���
S

�m̂ � H� · �pGdS

= i���
S

�m̂ � H� · �GdS �A2�

ecause �pG=−�G. The second integral in Eq. (A1) yields
dentically zero after using the rule of triple scalar prod-
cts on the kernel and by noting that ���G�0. The
hird term may be written as

−�
S

�p · ��m̂ · E� � G�dS =�
S

�m̂ · E��2GdS

= − �2���
S

�m̂ · E�GdS

�A3�

ecause it was assumed that G satisfies the scalar wave
quation. We can write

− �2���
S

�m̂ · E�GdS = − i���
S

�G�� � H�� · m̂dS,

�A4�

o that now Eq. (A4) reads as

i���
S

�G�� � H�� · m̂dS

= − i���
S

�� � �GH�� · m̂dS

+ i���
S

��G � H� · m̂dS

= − i���
S

�� � �GH�� · m̂dS

− i���
S

�m̂ � H� · �GdS. �A5�

form of Stokes’s theorem reads as, with our usual
otation,

� �
S

�� � B� · m̂dS =� �
S

�� � B� · dS =�
C

B · ds,

�A6�

here C is a closed contour around the open surface S. It
s easy to see that if the surface is closed, the value of the
ine integral vanishes. Hence the first term on the right
and side of Eq. (A5) also vanishes, so we are left with
−�
S

�p · ��m̂ · E� � G�dS = − i���
S

�m̂ � H� · �GdS.

�A7�

hen substituting back from Eqs. (A2) and (A7) into Eq.
A1), we obtain

�p · E = 0, �A8�

hich completes the first part of the proof. We now prove
hat �p�H=−i��E. Let us consider

4��p � H = i���
S

�p � ��m̂ � E�G�dS

−�
S

�p � ��m̂ � H� � �G�dS �A9�

ecause, again, ���G�0. A procedure similar to that de-
cribed above for the previous proof yields

�p � H =
i��

4�
�

S

�i���m̂ � E�G + �m̂ � E� � �G

+ �m̂ · E� � G�dS = − i��E. �A10�

ith this equation we have completed the proof.
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