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A rigorous method for transforming an electromagnetic near-field distribution to the far field is presented. We
start by deriving a set of self-consistent integral equations that can be used to represent the electromagnetic
field rigorously everywhere in homogeneous space apart from the closed interior of a volume encompassing all
charges and sinks. The representation is derived by imposing a condition analogous to Sommerfeld’s radiation
condition. We then examine the accuracy of our numerical implementation of the formula, also on a parallel
computer cluster, by comparing the results with a case when the analytical solution is also available. Finally,
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an application example is shown for a nonanalytical case. © 2006 Optical Society of America
OCIS codes: 050.1960, 260.2110, 260.5430, 000.4430.

1. INTRODUCTION

Since the publication of the now famous paper by Stratton
and Chu,1 a number of papers have been published that
chose the Stratton—Chu integral as starting point.>™
However, most of these works concentrated on diffraction
and/or focusing problems. The Stratton—Chu formula has
been derived for the specific case when all the sources of
electromagnetic radiation are situated outside a closed
volume. It then provides a rigorous solution for the
boundary value problem when the field on the surface of
the volume is known and one seeks to determine the
value of the field within the volume.

In computational electromagnetics one frequently faces
the problem of having to calculate the field in a rigorous
manner either far from the object that causes scattering
or on a surface that is much larger in lateral dimensions
than the wavelength. In certain specific cases it is pos-
sible to obtain analytical solutions so that the above prob-
lem does not occur. However, in numerical methods, such
as the finite difference time domain (FDTD)’ method or
the finite element method (FEM),® this is not possible
even if a supercomputer is used, due to memory and com-
putational time restrictions.

When numerical methods are used to solve a problem,
both the electric and magnetic fields are usually known
either anywhere within a volume or on the closed surface
of it, and one faces the task of propagating this field to an
arbitrary position in space. Since the Stratton—Chu for-
mula is an exact representation, it would in principle be
possible to use it to obtain the field from the numerical
data. However, since one is required to integrate the field
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on a closed surface, the Stratton—Chu formula is not di-
rectly applicable. Hence one needs to find an alternative
representation when the integration may be carried out
over the closed surface encompassing all sources of elec-
tromagnetic radiation.

In this paper we first derive such a formula. We then
use numerical integration to demonstrate the usefulness
of the results. Finally, the conclusions are drawn. Note
that throughout this paper the exp(-iwt) sign convention
and the SI system are used.

It is important to point out that even though we refer to
our method as “near- to far-field transformation,” the so-
lution equally applies to propagation to near and interme-
diate fields. Conversely, the “usual” transformation used
in conjunction with the FDTD method’ is strictly a near-
to far-field transform, where the necessary approxima-
tions have been made to the surface integrals.

2. THEORY

Consider a volume V with its closed boundary S. 9i(x)
and D(r) are two vector functions that are, together with
their first derivatives, continuous on S and within V, and
t=(x,y,z). From the divergence theorem of Gauss we

have
fJf V-inV:#%-mdS, (1)
v S

where 2B (r) is any well-behaved vector function and m is
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the outward surface normal. With the substitution 28
=M X (VX M) one obtains

JJJ \Y -[zmx(me)]dV=# [99t X (VX 91)]-mdS.
v s

(2)
This yields the vector analog of Green’s first identity:

fff[(V><§m)~(v><m)—im~v><(me)]dV
14

=# [ X (VX N)]-mdS. (3)
S

If we now interchange 9t and 9t in Eq. (3) and subtract
the resulting equation from Eq. (3), we obtain

ij[m'Vx(inm)—zm-Vx(me)]dV
14

=#[9}tx(v><m)—m><(v><zm)]-mds, (4)
S

which is the vector analog of Green’s second identity.
These two integral theorems will be the basis of further
derivation. Let us assume that the homogeneous and iso-
tropic medium filling V is nonconducting and that it con-
tains no charge or current within its interior. We now set!
M=E and 9t1=Ga in Eq. (4) where E represents the elec-
tric field, G is the scalar function required to satisfy the
scalar wave equation on and within S, and a is an arbi-
trary constant unit vector. If we substitute for 2t and N
in the left hand side of Eq. (4), the kernel of the integral
reads as

Ga: - [VX(VXE)]-E-{VX[VX(Ga)]}
=k2Ga-E-E-[k2Ga+V(a-VG)]
=—E:[V(a-VG)]=-V: [(a-VG)E],

with % being the wavenumber and where we used that
V-E=0. Hence the left hand side of Eq. (4) now reads as

—fff V-[(a-VG)E]dV:—a-#(E-ﬁl)VGdS,
v s

(5)

which follows from the divergence theorem [Eq. (1)]. The
first and the second terms on the right hand side inte-
grand of Eq. (4) give

[EX(VGXa)] m=a-[VG X (E Xm)], (6)

[GaxX (VXE)] m=a-[(VXE)Xm]G
=iopa- (HXm)G, (7)

where we have used Maxwell’s equation to relate E and
H. It is seen that a is a factor common to all terms in Eqs.
(5)—(7). Hence, if the results are gathered from these ex-
pressions and substituted into Eq. (4), then, as a is arbi-
trary, it is a straightforward matter to write
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#[ia),u(lile)G+(ﬁ1><E)XVG+(ﬁ1-E)VG]dS=0.
s

(8)

Hitherto we introduced the function G and required
that it be a solution of the scalar wave equation. For prac-
tical cases we set G to be the free-space Green’s function:

exp(ikr)
G=—oi, (9a)

r

where

r=lrg-ryl=J@-x)"+ -y, + (2 -2,)°,  (9b)

with r,=(x,y,z) being the coordinates of an infinitesimal
surface element dS on S and r,=(x,,y,,2,) being the
(fixed) observation point (see Fig. 1).

It has been assumed for the derivation of Eq. (4) that
both 9t and 9t are continuous and that V is homoge-
neous. As clearly shown by Eq. (9a), we encounter a sin-
gularity in G for r=0, i.e., when the observation point co-
incides with the boundary. Furthermore, there must be
sources of electromagnetic radiation located somewhere
in space to give rise to diffraction. Thus particular atten-
tion needs to be paid to the definition of S. Let us first
shift the origin of the Cartesian coordinate system to P
and circumscribe the point P by a small sphere of surface
St and radius &, as shown in Fig. 2. Note that due to the
linearity of Maxwell’s equations the choice of the origin of
the coordinate system is arbitrary. We also circumscribe
all sources and sinks in space by a volume S. Let us now
construct a large spherical surface S?, centered on P, of
radius e and connect S and S¥ by a small diameter tube
of surface S* and S% and SY by another small diameter
tube of surface S®. The original surface S is now made up
of elementary surfaces S?,...,S? resulting in a piecewise
smooth orientable and simply connected surface. The
originally outward normal m of S is now an inward nor-

y

Fig. 1. Geometry of the problem showing the closed surface of
the integration, the surface normal, the integral surface element,
and the observation point.
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Fig. 2. Closed surface of integration for the first version of the
Stratton—Chu formula.

mal for S%,...,S% and an outward normal for S¥. Conse-
quently, we have from Eq. (8) that

ff [...]dSi+fJ [...]dSii_,_J ['--]dSiii
Si Sii Siti

R f [-JdS + f [-lds'=0.  (10)
Siv Sv

If the diameters of tubes S¥ and S are made infinitesi-
mally small, then the contribution from these surfaces be-
comes vanishingly small; hence we may write

- [ -]dSi — [ -]dSiii +
Si siii Sv

[-]dS’=0, (11)

noting that now the integrals are again closed because S?,
Sii and SV are separate closed surfaces. Also note that
the signs of the first and second terms have been changed,
so that for all surfaces m is an outward normal. We first
concentrate on the integration performed over S'. If we re-
fer to Figs. 1 and 2, it is clear that, since the sphere was
circumscribed about P, #=1h. Whence for S’ we have

1
—# [iw,u(ﬁl X H)G+G<ik - —)(ﬁl X E) Xm
st r

1
+G(ik——>(1h-E)1i1}dSi. (12)

r

Since, on the surface S?, dSi=5?dQ), with Q being a solid
angle, Eq. (12) gives the following for a vanishing radius:

{ exp(ikr)
lim — # iopmm X H)———
QO

5—0 r
exp(ikr) 1
+E——|ik-— 8dQ =47E. (13)
r
r=6

r

We now turn to discuss the integral over S”. In a manner
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similar to that before, we have

|: exp(ikr) exp(ikr) ( 1 ) ]
# lop(m X H) +E ik——| [dSY
- r r r

1 1
= # {[ﬁl X (VX E)+ikE]— - E—z}exp(ikr)dS”,
v r r

(14)

which can be written for integration over the solid angle
QO as

f J {{m X (VX E) +ikE]r — Elexp(ikr)dQ
Q

=f f {[r X (V X E) + ikrE] - E}exp(ikr)d(}, (15)
Q

with the function values taken on the surface of the
sphere.

Because the surface SY limits the volume within which
our calculation of the electromagnetic field is valid, we
would like to extend this volume such that it encompasses
the entire space, that is, r—. Since S is a surface en-
compassing all sources and sinks of electromagnetic ra-
diation and the surface S is merely a mathematical con-
struction, it is not physically tenable to expect its
presence to perturb the field at P. Consequently, as e— o,
the contribution of Eq. (15) to Eq. (11) should be vanish-
ingly small. For this to happen we must have

IrE| <K, (16a)

r X (VXE)+ikrE —0 (16b)

as r—oo, with K being an arbitrary finite constant. The
conditions given by relations (16) shall be termed the vec-
torial radiation condition in analogy to the scalar radia-
tion condition of Sommerfeld.’ Note that the second con-
dition is identical to that of Nédélec."

After substituting from Eq. (13) into Eq. (11), Eq. (8)
the electric field is given on the open exterior of S% by

1
E(xp,y,,2,) = o [fwum X H)G + (m X E) X VG
w Siii

+(m-E)VG]dS. (17a)

Due to the symmetry of Maxwell’s equations the substitu-
tion E—uH and H—-€E yields the following for the
magnetic field:

1
H(x,,y,,2,) = - ol 1 [iwe(m X E)G - (m X H) X VG
Slll

— (- H) V G]dS¥. (17b)

This formula is different from that published in the
literature,!! where workers defined the problem slightly
differently, as we shall now discuss.

Consider the volume shown in Fig. 3. The surface S is
now being put together as the surface of the sphere sur-
rounding the point of observation P, denoted by S% the
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Fig. 3. Closed surface of integration for the second version of
the Stratton—Chu formula.

small diameter tube of surface S%; and, finally, the surface
of the outer shell S#. Since the volume where the integral
is valid is the exterior of S and S and the interior of S%,
all sources and sinks must be located outside this surface.
The contribution from surface S vanishes as the diam-
eter of the tube is made zero, and the contribution from S°
is just 47E as before. Consequently, the electric field is
given, within the closed interior of S, by

[iou(m X H)G + (th X E) X VG
Siii

E(xpaypyzp) == ET

+(m-E)VGldS#, (18a)

and the expression for the magnetic field is given by

1
H(x,,y,,2,) = - [iwe(m X E)G - (m X H) X VG

o Siii
— (- H) V G]dS¥. (18b)

Equations (18) are usually referred to as the Stratton—
Chu integral theorem.

On comparing Eqgs. (17) and (18), we initially note a
sign difference for both the electric and magnetic fields.
On closer inspection we note that there is also a difference
in the surface over which the integration is performed. In
Eqgs. (18) the surface encompasses a source- and sink-free
volume of space, and m is the outward surface normal.
The point of observation P is inside the volume. In the
case of Eq. (17) the surface S encompasses all sources
and sinks in space, and m is an outward normal. The
point of observation is outside the enclosed volume. Con-
sequently, we recognize that Eqs. (17) and (18) are solu-
tions of two different problems. Appendix A contains a
proof showing that Eqgs. (17) and (18) are exact solutions
of Maxwell’s equations. The solution is unique, which fol-
lows from the fact that Maxwell’s equations lead to a
unique solution for a given set of boundary conditions.

In conclusion, Eqs. (18) are a unique, self-consistent,
and rigorous solution of Maxwell’s equations for the elec-
tric and magnetic field at a point within any closed sur-
face S bounding a charge- and current-free, homogeneous,
and isotropic volume. Also, Egs. (17) are a unique, self-
consistent, and rigorous solution of Maxwell’s equations

Torok et al.

for the electric and magnetic field at any exterior point of
a closed surface bounding all sources and sinks. It can
also be shown,'? though it is well outside the scope of this
paper, that this integral can be the basis for deriving
other, well-known diffraction theories.

3. PRACTICAL USE OF THE
STRATTON-CHU THEORY

When seeking the solution of an electromagnetic scatter-
ing or diffraction problem by means of an arbitrary
shaped object, it is, in general, necessary to employ a rig-
orous numerical method. This is because it is very diffi-
cult to analytically solve Maxwell’s equations in arbitrary
inhomogeneous regions with even the simplest of bound-
ary conditions. Numerical methods such as the FDTD
technique and the FEM are commonly used for this pur-
pose. These methods, however, use computer memory pro-
portional to the volume of the computational space being
analyzed. It is thus often impossible to include far-field
regions in the computational space. If, however, a numeri-
cal method is used to calculate the field on a boundary
surrounding the scatterer, the field anywhere outside the
boundary may be found by applying the Stratton—Chu in-
tegral [Eqs. (17)].

There are other methods of obtaining the far field from
near-field data. However, as stated at the end of Section 2,
the other major vectorial diffraction theories such as the
vectorial integral theorem of Kirchhoff and the vectorial
Rayleigh—Sommerfeld theory may be obtained from the
Stratton—Chu integral.'> Thus the Stratton—Chu integral
is if anything more general than the other theories and is
well suited to our application.

A. Numerical Implementation of the Stratton-Chu
Integral

Since the near-field data are known numerically, the
Stratton—Chu integral must be evaluated numerically.
The surface of integration and associated complex ampli-
tudes are defined by using a mesh of triangles. Such a
mesh is represented by a set of vertices V={ry;
=(r$1,i,r§,i,rii) e R3}, a set of facets F={(v},v?,v%)eN3,1
<v/<N,}, where N, is the number of vertices, and two
sets of complex amplitudes E={Ei=(ei1,ei2,ei3) e (3} and
H={Hi=(hi1,hi2,h;°’) e (3}, Each element of each triple in F
is an index into V, E, and H. In this way each triangle is
constructed from three vertices, and the field at each ver-
tex is also known. The orientation of the surface is stored
according to the order in which the facet indices are
stored. Such a representation minimizes computer stor-
age and provides an efficient way to traverse the surface.
This representation can be used to represent any polyhe-
dral surface and so is very general.

Integration is performed over each facet, and the re-
sults summed to give the final result. Gaussian quadra-
ture is commonly used for integration over a triangle. In
general, a high order Gaussian quadrature would be em-
ployed to improve integration accuracy. However, since
the field is known only at the triangle vertices, only first
order Gaussian quadrature may be employed. The first
order scheme provides an exact result if the integral ker-
nel varies no worse than a polynomial of first order.’ This
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is why it is important to use a fine mesh to represent the
closed surface of integration.

By employing first order Gaussian quadrature integra-
tion, we may evaluate the Stratton—Chu integrals accord-
ing to

Nfacets 1 3
Uy = 2 | 52 1ty r, ) By HpA, |, (19)
i=1 j=1

where U is the field of interest, Ny is the number of
facets, I is the kernel of the integral being evaluated, r,
=(x,,Yp,2p) is the observation point, m, is the surface nor-
mal of facet 7, ry,j is the jth vertex of facet i, E,; is the
complex electric field at the Jth vertex of facet i, H;; is the
complex magnetic field at the jth vertex of facet i, and A;
is the area of facet i.

B. Parallel Implementation of the Stratton-Chu Integral
The numerical evaluation of the Stratton—Chu integral at
a number of observation points is quite a computationally
intensive task. This is because the argument of the
Green’s function and its gradient is dependent on both the
observation point and surface coordinates. Thus the
Green’s function and its gradient must be evaluated for
every pairing of observation and surface points. To speed
up computation time, the program is implemented in
parallel.

The message passing interface is used as the basis for
interprocess communication. The program is parallelized
by dividing up the set of observation points where the
field is to be calculated. Each processor then calculates
the field at a subset of observation points. The program
runs on our 36 processor Beowulf cluster.

4. EXAMPLES AND ANALYSIS

A. Accuracy of Implementation
The implementation of the Stratton—Chu integral was
tested by using the field due to a harmonically oscillating
dipole as a test field. This was done by first calculating
the field on a test surface surrounding the dipole. This
field was then used as the input to the Stratton—Chu pro-
gram to evaluate the field at a test plane some distance
from the test surface. The field at the test plane was then
compared with the field obtained analytically.

The electromagnetic field at point rii due to a harmoni-
cally oscillating dipole with moment p, situated at the ori-
gin, may be calculated according to'*

ck? exp(ikr) 1
H=—@A X p)——|1-— |,
yr el L ikr
1 exp(ikr)
E= E2(A X p) X Ai——
4 e

1 ik
+[3ha(h - p) - p](ﬁ - r—Q)exp(ikr)} s (20)

where n is a unit vector directed from the dipole to the
point of observation and r is the distance from the dipole
to the point of observation.
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A z-polarized dipole situated at the origin and radiating
at wavelength A=632.8 nm was used in all tests. A regu-
lar triangular mesh fitted to the surface of a cube, cen-
tered on the origin and of side 2\, was used as the closed
surface of integration.

An aggregate error metric was defined to measure the
accuracy of the Stratton—Chu integral. This results in a
measure of relative error that does not produce the spu-
rious results that some pointwise relative error measures
produce. It also has the added advantage of producing
only a single error value, thus making it useful for com-
parison purposes. The aggregate error metric is thus de-
fined as

N
> [USC(r;) - UAry) 2

i=1

€y = ’ (2 1)

N
E ‘UA"(I'i)|2
i=1

where U can represent either the electric field E or the
magnetic field H, N is the number of observation points,
UA4” is the field calculated analytically with Egs. (20), US¢
is the field calculated with the Stratton—Chu integral
[Egs. (17)], and r; is the ith point on the test plane where
the field was calculated.

The first test examined the dependence of error on the
density of the mesh used to represent the closed surface of
integration. This was performed by using the Stratton—
Chu integral [Eqgs. (17)] to propagate the dipole field from
a series of test surfaces with increasingly dense meshes to
a fixed test plane. The test plane was parallel to the xy
plane and situated at 200\ along the z axis. It had dimen-
sion 4000\ X 4000\ so as to contain the majority of the di-
pole field pattern. The vertex spacing on the surface of the
integration mesh was varied from \/1 to \/40. The mesh
was constructed by first partitioning each cube face of the
integration surface into a minimal number of squares of
the desired vertex spacing. Each square was then divided
into two right angled isosceles triangles. Vertex spacing is
defined as the length of the side of the squares.

Figure 4 shows a plot of aggregate error versus mesh

101 F T T T T T T T

— E

i €
10 : rmim H ) 4 f
__ ((vertex spacing)/A)

—_
o
T

Aggregate Error

0 5 10 15 20 25 30 35 40
A(Vertex Spacing)

Fig. 4. (Color online) Graph showing aggregate error versus
mesh density for a single dipole scatterer.
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density for E and H. Unsurprisingly, the error reduces as
the vertex spacing is reduced. For large vertex spacing
the error is unacceptably high; however, it improves rap-
idly as the vertex spacing reduces. In fact, as shown on
the plot, the error follows approximately a (vertex
spacing)4 relationship. The appropriate vertex spacing de-
pends very much on the application. For example, when
the field data for the closed surface of integration are cal-
culated with a rigorous numerical method, they will al-
ready have an error associated with them attributable to
the numerical method. The vertex spacing should thus be
chosen to result in error less than that of the numerical
method.

Numerical methods require grid spacing to be kept be-
low a certain upper limit in order to obtain accurate re-
sults. The Stratton—Chu surface is obtained directly from
sample points on the boundary of the grid of the numeri-
cal method. Thus the grid spacing of the numerical
method determines the vertex spacing of the Stratton—
Chu surface. This is, in general, N\/20 or finer if the FDTD
method is used to compute the near field. At this vertex
spacing the error associated with the Stratton—Chu inte-
gral is likely to be less than that due to the FDTD
method. Thus the Stratton—Chu integral is well suited for
propagating fields obtained from numerical calculations.

The second test examined the dependence of error on
distance between the dipole and test plane. The test sur-
face from the mesh density error calculation with mesh
vertex spacing of N\/20 was reused for this calculation.
The test plane was again parallel to the xy plane; how-
ever, its position was varied along the z axis. The dimen-
sions of the test plane were altered proportionately with
the plane’s position along the z axis such that each vertex
retained its relative position within the field distribution.
This ensures that the aggregate error measures between
two plane positions are comparable. The distance along
the z axis from the dipole to the observation plane was
varied from 1\ to 1000\ in order to test the efficacy of the
Stratton—Chu integral as a near to far-field transform.
The results of this test are shown in Fig. 5; note, however,

—y
oI
o

T e )
1
[ ]

4.9L _

4'80 50 100 150 200 250 300 350 400

Propagation Distance/Wavelength

Fig. 5. (Color online) Graph showing aggregate error versus
propagation distance for a single dipole scatterer when a vertex
spacing of \/20 is used.
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pr3'=

y/radius

_132 |

x/radius
Fig. 6. (Color online) Diagram showing the position of the three
spheres in the plane z=0.

that the axes have been truncated to a maximum propa-
gation distance of 400\, as the error remains constant for
greater propagation distances.

Figure 5 shows that the aggregate errors for the elec-
tric and magnetic fields differ slightly, as is also evident in
Fig. 4. Note, however, that this difference is very small
and is most probably due to the differing complexity of the
dipole field components. The most important feature of
Fig. 5 is that the error reduces rapidly as the propagation
distance increases into the far-field region. This is to be
expected, as the field becomes smoother and better be-
haved in the far field. Furthermore, it may be shown that
the change in r, the argument of the Green’s function, due
to a small change in the x surface coordinate is given by

x-x

or = L

o, (22)
r

where the result is identical for the y and z coordinates.
Thus, as the propagation distance increases, the phase
and amplitude of the Green’s function vary more slowly as
a function of the surface coordinates. It is thus to be ex-
pected that the aggregate error diminishes with propaga-
tion distance.

B. Diffraction by Three Spheres
As a practical example we consider calculating the far-
field diffraction pattern of a complex object for which the
scattered field cannot be calculated analytically in a
simple manner: a collection of three perfectly conducting
spheres, each 0.405 um in diameter located in the plane
z=0 (Fig. 6). A linearly polarized plane wave, traveling in
the positive z direction, is incident on the spheres. Sup-
pose that we wish to know the scattered field at a plane
intersecting the negative z axis a long way from the
spheres for both x- and y-polarized incident plane waves.
The field scattered by the spheres can be calculated
routinely with the FDTD method. However, even on pow-
erful workstations this technique could not be used to cal-
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culate the field beyond about ten wavelengths from the
spheres. On supercomputers it may be possible to go as
far as over 100 wavelengths, but this would require a very
expensive machine. Conversely, the first version of the
Stratton—Chu integral theorem [Eqs. (17)] can be run on a
medium-sized workstation and is perfectly suited to such
a problem, as it may be used to calculate the field at ar-
bitrarily large distances from the spheres by using the
FDTD data.

To illustrate how this can be done, we first show the in-
tensity as given by the FDTD method on the surface that
surrounded the computational volume in Fig. 7 for \
=405 nm. The FDTD method produced these results on a
cube of side 2.5\ meshed by using a triangular mesh of
120,000 facets and 60,002 vertices. The vertex spacing
was N/40. Then the Stratton—Chu integral is employed,
and the resulting intensity distribution in the plane
z=-2 m is shown in Fig. 8 for x- and y-polarized incident
plane waves.

These results show that even in the far field there are
differences in the diffraction pattern caused by the polar-
ization of the incident wave. The true value of this ex-
ample is that it demonstrates how, with the scattered
field stored on a surface enclosing the scatterer, the field
anywhere outside that surface can be calculated in a
memory- and time-efficient manner. The practical benefit
of this is that it allows numerical modeling of scatterers
without needing to worry about where the field should be
propagated to. It would be very inefficient and in many
cases impossible to, for example, rerun an FDTD simula-
tion simply to propagate the scattered field further than
was originally done.

C. Parallel Implementation of the Stratton-Chu Integral
To assess the time saving due to parallelization, we ran a
calculation, encountered frequently when modeling the

' ‘05
0 0

-05 -0.5
y (um)

X (um)

1
05
0
1
WOS
0

y (km)

Fig. 7. Intensity of the electric field scattered by three spheres
on the FDTD surface for x- (top) and y- (lower) polarized incident
waves. Images have been individually normalized.
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-2 0 2

Fig. 8. Intensity of scattered field in the plane z=-2 m for (a)
x-polarized incident waves and (b) y-polarized incident waves.
Images have been individually normalized.

readout of optical disks, many times by using an increas-
ing number of processors. In this calculation the
Stratton—Chu integral was used to evaluate the scattered
field on a square of width 4 um positioned 253 nm (one
wavelength in plastic with refractive index 1.6) from the
data layer of the disk. A uniform grid of 4624 observation
points was constructed on this square. The closed surface
of integration, on which the field was determined by the
FDTD method, was composed of a mesh of 195,072 facets
and 97,538 vertices. The vertex spacing was \/40.

This calculation was performed 36 times, initially by
using a single processor and finally by using 36 proces-
sors. Results are shown in Fig. 9. Results have been pre-
sented in two different ways. The upper plot in Fig. 9
shows the total time taken to evaluate the field at all ob-
servation points on the grid. This may be considered the
real time required to complete the simulation. This plot
shows that, as expected, significant time can be saved by
employing more processors. The lower plot shows the to-
tal processor time per observation point evaluated, taking
into account the number of processors employed. This plot
is of more interest, as it shows the penalty associated
with using additional processors. This penalty is caused
by the additional initialization and communication that
results from using more processors. In the absence of such
a penalty one would expect the lower plot in Fig. 9 to be
horizontal.

A linear trend line has been fitted to the data and re-
veals that the penalty is approximately 10~* s per obser-
vation point per processor. Note that the plot exhibits ap-
parently random variations often associated with
benchmarking measurements. Thus, of the 151.4 s re-
quired to perform the calculation on 36 processors, just
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Fig. 9. Timing data for parallel implementation of the Stratton—
Chu code. The upper plot shows total execution time as a func-
tion of the number of processors, and the lower plot shows the
average total amount of processor time per observation point as a
function of the number of processors employed.
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Fig. 10. (Color online) Theoretical prediction for the total execu-
tion time as a function of the number of processors employed.

under 17 s (or 11%) of this was consumed by additional
initialization and communication. Although we have only
36 processors, it is of interest to know at what number of
processors the total computation time will begin to rise. If
it is assumed that the penalty per processor remains con-
stant, the total time to complete a simulation can be ap-
proximated as

T(N) =Ty/N + Nt,, (23)

where T +t, is the time taken to complete the calculation
on a single processor, N is the number of processors, and
t, is the penalty per processor. Assuming a value for ¢, of
104X 4624 =0.4624, this T is plotted in Fig. 10. The turn-
ing point of the plot occurs at approximately N=108 pro-
cessors. It should be noted that this result depends on the
specific simulation being run and is quite approximate
due to the nature of measuring code execution time. This
result does reveal, however, that for this typical simula-
tion there is little point in exceeding approximately 100
processors.
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Without parallelization, evaluation of such problems
would become prohibitively time consuming. For ex-
ample, we need to perform 42 of these typical calculations
in order to analyze a portion of a single track on an optical
disk. On a single processor this would take over 63 h. Us-
ing 36 processors requires only 1.8 h. We need to simulate
many of these tracks, so, given the often iterative nature
of such simulation, parallelization of this problem is
essential.

5. CONCLUSIONS

This paper presented a rigorous method for transforming
the near field of an electromagnetic distribution to the far
field. We derived a set of self-consistent integral equa-
tions that were used to represent the electromagnetic
field rigorously everywhere in a homogeneous space apart
from the closed interior of a volume encompassing all
charges and sinks. The representation was derived by im-
posing a condition analogous to Sommerfeld’s radiation
condition that we termed the vectorial radiation
condition.

We examined the accuracy of our numerical implemen-
tation of the formula, also on a parallel computer cluster,
by comparing the results with a problem when the ana-
lytical solution is known. We have found that the aggre-
gate computational error decreases with increasing dis-
tance between the volume and the observation point. We
also have found that in the case of our parallel computer
cluster there is an optimum number of processors beyond
which, due to interprocessor communication latency, the
time it takes to evaluate the integral is longer than it is
with fewer processors.

Our basic equation is of fundamental relevance in
electromagnetic propagation, and the numerical
implementation will find applications in computational
electromagnetism.

APPENDIX A

Now we discuss how Eqgs. (18) are a rigorous solution of
Maxwell’s equation. It trivially follows that Eqs. (17) and
also a solution of Maxwell’s equations. First, we introduce
the notation V,, to distinguish the vector differential op-
erator acting on the observation point P from the one, V,
acting on the surface and use S to denote the closed sur-
face of integration for simplicity. We have to show that (i)
V,-E=0 and (ii) V, X H=-iweE. Let us start with (i):

47V, E=- iw,u# v, - [(th x H)GdS - # v, [(th X E)
S S

X VG]dS - # V, [ -E)VGIldS. (A1)
s

The first integral can be rewritten to give
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- iw,u,# V, - [(m X H)G]dS
S
=- iw,u,# [V, - (X H)]GdAS
S
- iw,u# (X H) - V,GdS
S

=iw,u,# (m xH)-VGdS (A2)
s

because V,G=-VG. The second integral in Eq. (A1) yields
identically zero after using the rule of triple scalar prod-
ucts on the kernel and by noting that VXVG=0. The
third term may be written as

- # V, - [(m-E)VGldS = fﬁg (- E)V2GdS
s s

=- wz,uf# (m - E)GdS
S

(A3)

because it was assumed that G satisfies the scalar wave
equation. We can write

- wz,m# (fa-E)GdS = - iw# [G(V x H)]- tadS,
S S

(A4)
so that now Eq. (A4) reads as

- iw/.l,# [G(V X H)]- 1dS
s
=—iwudD [V X (GH)]- mdS
+ioudd (VG X H) - thdS
[V X (GH)] - tdS

=—ilou

—iwpdDd (X H)-VGAS. (A5)

= =B =

A form of Stokes’s theorem reads as, with our usual
notation,

ff(VXiB)-IhdSsz(VX‘B)-dSzﬂg‘B-ds,
s s c

(A6)

where C is a closed contour around the open surface S. It
is easy to see that if the surface is closed, the value of the
line integral vanishes. Hence the first term on the right
hand side of Eq. (A5) also vanishes, so we are left with
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—# Vp-[(ﬁl-E)VG]dS=—iw,u# (m X H) - VGdS.
s s
(A7)

When substituting back from Eqgs. (A2) and (A7) into Eq.
(A1), we obtain

v

,-E=0, (A8)

which completes the first part of the proof. We now prove
that V, XH=-iweE. Let us consider

47V, x H= iwe# V, X [( X E)G]dS
S
- ﬁg V, x[(h X H) X VG]dS  (A9)
s

because, again, VX VG=0. A procedure similar to that de-
scribed above for the previous proof yields

lwe
v, xH:—# [iwpwm X E)G + (m X E) X VG
4 S
+ (- E)VG]dS = -iweE. (A10)

With this equation we have completed the proof.
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