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We describe a rigorous formalism for the calculation of the nonlinear parameter of arbitrary

three-dimensional nanophotonic graphene-comprising waveguides. Graphene is naturally imple-

mented as a zero-thickness conductive sheet, modeled solely by complex linear and nonlinear

surface conductivity tensors, whose values are extracted from theoretical models. This represen-

tation is compared to the more commonly employed equivalent bulk-medium representation and

is found superior. We numerically calculate the nonlinear parameters of several optical wave-

guide archetypes overlaid with infinite graphene monolayers, including silicon-wire and plas-

monic metal-slot and metal-stripe configurations. The metal-slot configuration offers the most

promising performance for Kerr-type nonlinear applications. Finally, we apply the same formal-

ism to probe the potential of graphene nanoribbon waveguide nonlinearity in the terahertz band.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4926501]

I. INTRODUCTION

Graphene is a revolutionary two-dimensional material,

owing to a combination of unique properties: one-atom thick-

ness, remarkable mechanical strength, and high thermal and

electrical conductivity.1,2 Naturally, this placed graphene in

the forefront of several research fields, including plasmonics3

and other guided-wave applications4 in the optical spectral

region and down to the far-infrared (THz). Of particular inter-

est for photonic and opto-electronic applications is the ability

to control graphene’s conductivity via tuning its Fermi level,

by means of chemical doping or by electrical gating.5 Several

graphene-comprising optical devices have been theoretically

proposed and experimentally demonstrated, including photode-

tectors,6 polarizers,7 and modulators.8,9 The nonlinear behavior

of graphene has also attracted considerable interest in recent

years, after its nonlinearity was theoretically predicted to be

rather high.10 Graphene-based nonlinear waveguides and their

potential applications are intensively investigated, with experi-

mental11,12 and theoretical13–15 results slowly converging.

The preliminary goal of this work is to institute a frame-

work for the rigorous electromagnetic (Maxwellian) treat-

ment of nanophotonic waveguides that comprise both bulk

(3D) and sheet (2D) materials,16 of which graphene is a

prominent example. We utilize the finite-element method

(FEM),17 which is able to model and seamlessly interface

both types of materials, while the vector properties of the

electromagnetic fields, as well as the tensor properties of the

involved bulk and sheet media, are fully taken into account.

Moreover, it will be shown that the sheet representation of

graphene is superior to the more commonly employed equiv-

alent (or effective) bulk representation,5 both in terms of

consistency with underlying physics and of minimized com-

putational effort. The crucial point is the inherent anisotropy

exhibited by 2D materials in 3D geometries, which is

naturally satisfied in the sheet representation but has to be

carefully introduced in the equivalent bulk representation.

The main objective of this work is the rigorous calcula-

tion of the nonlinear parameter, cNL, in nanophotonic wave-

guides comprising bulk and sheet nonlinear media (Fig. 1). It

will be shown that cNL, which refers to a given waveguide

mode, can be split into contributions from bulk and sheet

material nonlinearity. The pulse propagation along such non-

linear waveguides is modeled in terms of the slowly varying

envelope approximation and results in a set of coupled prop-

agation equations, commonly referred to as the nonlinear

Schr€odinger equations (NLSEs),18 each one corresponding

to a different signal, that is, a different waveguide eigenmode

or frequency component. This research area has received

renewed attention in the past few years, with the emergence

of nanophotonic, plasmonic, and hybrid waveguides19–22

breaching the diffraction limit. Our primary focus will be the

self-acting phenomena that originate from interaction of

guided electromagnetic waves within a narrow frequency

band, namely, the optical Kerr effect and the two-photon

absorption (TPA). Nevertheless, this formulation can be gen-

eralized for other third-order phenomena such as four-wave

mixing (FWM), parametric amplification, Raman scattering,

and third-harmonic generation (THG).23 All these can be

modeled via an appropriate third-order nonlinear susceptibil-

ity, vð3Þ, referring to bulk media.24 In this work, we will

expand this formalism to include the contribution stemming

from sheet materials modeled by a nonlinear conductivity,

rð3Þ, whose value is extracted from theoretical models.

Finally, the cNL of graphene-comprising photonic and plas-

monic waveguide archetypes will be numerically calculated

in order to establish benchmark values and identify optimal

designs, both in the optical and THz spectral regions.

This paper is organized as follows: Section II contains

the electromagnetic formulation, describing the conductive

sheet medium properties, the equivalent bulk mediuma)alexpiti@auth.gr
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approximation, and some key aspects of FEM implementa-

tion before presenting generalized expressions for the calcu-

lation of the nonlinear parameter. Section III briefly reviews

theoretical models for the linear and nonlinear conductivity

of graphene monolayers and provides a short discussion on

the magnitude of its nonlinear response. Section IV deals

with the numerical extraction of the nonlinear parameter for

typical graphene-comprising waveguide modes and provides

insight for their optimization. The paper’s conclusions are

presented in Section V.

II. ELECTROMAGNETIC MODELING

In this section, we describe the electromagnetic repre-

sentation of graphene and its FEM implementation and, sub-

sequently, present formulas for the rigorous calculation of

nonlinear parameters in graphene-comprising waveguides.

A. Graphene as a conductive sheet

The frequency-domain expression of Maxwell’s curl

equations is

r� ~E ¼ þixl0�lr
~H; (1a)

r� ~H ¼ �ixðe0
~E þ ~PÞ þ ~J; (1b)

where ~P ¼ ~Plin þ ~PNL is the electric polarization, ~J ¼ ~Jlin

þ ~JNL is the electric current density, and the bar (as in �l)

denotes a tensor in R3. Both ~P and ~J are separated into a lin-

ear and a nonlinear part, the latter considered a perturbation.

Equations (1) are derived under the convention expð�ixtÞ
for the time-harmonic variation.

The linear polarization term can be written as ~Plin ¼ e0

�vð1Þ ~E, where �vð1Þ ¼ �er � I3 is a second-rank tensor represent-

ing the linear susceptibility. In waveguides comprising only

isotropic media, the tensor �er degenerates to a scalar value,

that is, erI3; similarly, �lr ¼ I3 as optical materials do not ex-

hibit magnetic properties. The nonlinear part of the polariza-

tion stems from various physical phenomena and can be

modeled with higher-rank susceptibility tensors.25,26 In this

work, we include only the third-order nonlinear susceptibil-

ity, which can be written in the abstract time-domain form

PNL ¼ e0�vð3ÞjEEE, implying a tensor contraction between

the fourth-rank tensor �vð3Þ and three electric field vectors.

For a thorough description of the properties of this suscepti-

bility tensor, see Refs. 18 and 26.

The electric current density is given by Ohm’s law as

J ¼ rE, where r is the conductivity of the medium. The

bulk current density can be expressed as a power series in

the time-domain fields

Jb ¼ �rð1ÞjEþ �rð2ÞjEEþ �rð3ÞjEEEþ � � � ; (2)

where �rðnÞ are complex-valued ðnþ 1Þ-rank conductivity

tensors (in units of [ðS=mÞðm=VÞn�1
]) analogous to the sus-

ceptibility tensors �vðnÞ. Converted to the frequency domain,

the first term of Eq. (2) represents the linear current density,
~Jlin, and the following terms represent the nonlinear current

density, ~JNL. Without loss of generality, bulk-medium con-

ductivity can be introduced as an imaginary part to the sus-

ceptibility tensor of respective rank, and thus Jb is absorbed

by P in Eq. (1b). However, in the presence of conductive

sheets of infinitesimally small (practically zero) thickness,

the overall current density J also involves sheet current den-

sity contributions, Js, which are naturally expressed by an

expression analogous to Eq. (2)

Js ¼ �rð1Þs jEþ �rð2Þs jEEþ �rð3Þs jEEEþ � � � (3)

with �rðnÞs being surface conductivity tensors, measured in

[Sðm=VÞn�1
]. The overall current density can be written as

J ¼ Jb þ JsdsðrÞ, where ds is a surface Dirac function.27

The 2D nature of sheet materials implies an inherent an-

isotropy in vectorial R3 formulations. Specifically, the sur-

face current ~Js in graphene can only have components

tangential to the sheet and, in the linear case, does not impli-

cate the normal electric field component. Assuming a sheet

normal to the y-axis, this type of anisotropy is modeled by

the second-rank surface conductivity tensor

�rð1Þs ¼
rs;xx 0 rs;xz

0 0 0

rs;zx 0 rs;zz

2
4

3
5; (4)

containing four independent parameters. However, for most

practical applications, graphene exhibits a number of sym-

metries that simplify Eq. (4), specifically rs;xz ¼ rs;zx � 0

(except under the presence of strong magnetic field28) and

rs;xx � rs;zz ¼ rc. In this case, graphene can be modeled by

a single surface conductivity complex value (rc) and

knowledge of the normal vector (n) to derive the surface

current

~Js ¼ �rð1Þs
~E ¼ rc

~Ek ¼ rc ½n� ð~E � nÞ�; (5)

where ~Ek are the electric field components tangential to the

sheet. For inhomogeneous (or non-planar) graphene sheets,

the value of rc (or n) can vary in space.

Returning to the higher-order terms of Eqs. (2) and (3)

responsible for the nonlinear current density ~JNL, we will

focus exclusively on the third-order nonlinear surface

conductivity �rð3Þs . Even-order processes, such as second-

harmonic generation (SHG), in unstrained graphene are

FIG. 1. Silicon wire waveguide overlaid with a low-index cladding and cov-

ered by a graphene sheet. In the inset, the FEM-discretized waveguide cross-

section in the xy-plane.
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vanishingly small due to graphene’s unit cell inversion sym-

metry and can become appreciable only when the sheet is de-

posited on a substrate,23 is deformed/strained,29 or by using

DC current to generate an asymmetric steady state of the

electron density.30 In any case, this work focuses on self-

acting nonlinear phenomena, namely, the Kerr effect and

TPA, that can be described by a nonlinear surface current

density with the following general expression for its j-th car-

tesian component26,31

Js;j;NL ¼ Js;NL � j ¼
3

4

X
klm

r 3ð Þ
s;jklmEkE�l Em; (6)

where the subscripts fj; k; l;mg denote cartesian components,

that is, {x, y, z}, and rð3Þs;jklm are the 81 complex-valued ele-

ments of the fourth-rank tensor �rð3Þs . The form of �rð3Þs for gra-

phene can be derived from the hexagonal symmetry group

D6h (6/mmm).14,23 When deposited on a substrate, graphene

loses its inversion symmetry along the surface normal, thus

giving rise to C6v (6 mm) symmetry.23 Both these symmetry

groups typically refer to bulk/3D media and allow for 21

nonzero (10 independent) elements when {x, y, z} match the

crystal coordinate system. In sheet/2D media, the normal

component of Js;NL is required to vanish, and, as a result, the

“reduced” 2D form of the D6h or C6v group allows for 14

nonzero (6 independent) elements. Furthermore, using all

possible symmetries to reduce the number of elements leads

to a �rð3Þs tensor that entails 8 nonzero elements that all

depend on a single complex nonlinearity value (r3), accord-

ing to

r 3ð Þ
s;jklm ¼ r3

1

3
djkdlm þ djmdkl þ djldmk

� �
: (7)

In this expression, dpq is the Kronecker delta and fj; k; l;mg
correspond only to the two cartesian components that are

tangential to the graphene sheet. For instance, when the sheet

is normal to the y-axis, then rð3Þs;xxxx � rð3Þs;zzzz ¼ r3 and

rð3Þs;mmnn � rð3Þs;mnmn � rð3Þs;mnnm ¼ r3=3, where fm; ng ¼ fx; zg.
The tensor of Eq. (7) is an overly simplified version of D6h

or C6v and describes a sheet material that can be considered

as the 2D-equivalent of an isotropic centrosymmetric bulk/

3D medium; in the latter case, subscripts fj; k; l;mg would

scan all three cartesian components and the fourth-rank ten-

sor would comprise 21 nonzero (1 independent) elements.

B. Equivalent bulk medium representation

The sheet representation of graphene is its most natural

macroscopic modeling in the framework of Maxwellian elec-

tromagnetism. Nevertheless, another representation is, as of

now, more commonly used in the literature: the equivalent

bulk medium approach, where graphene is modeled as a

bulk-material layer of sub-nanometer (nonzero) thickness.5

The bulk representation of graphene is useful when a com-

parison with other bulk materials is required and can be eas-

ily introduced in any formulation designed for bulk

materials. However, it has two drawbacks: First, it requires

careful consideration of the anisotropy of the original sheet

material and, second, it increases the computational burden,

as will be discussed in Sec. II C.

The properties of this equivalent bulk material, namely,

the refractive index (n0;eq) and the nonlinear index (n2;eq), are

derived from the sheet material properties, that is, the set of

complex conductivity tensors: A sheet material of the surface

conductivity tensor �rðmÞs can be represented by an equivalent

bulk medium of thickness d and susceptibility tensor

�vðmÞeq ¼ i�rðmÞs =ðxe0dÞ, according to Eq. (1b). Consequently,

the equivalent relative permittivity for a graphene sheet with

dgr � 0:34 nm can be evaluated as

er;eq ¼ 1þ v 1ð Þ
eq ¼ 1þ irc

xe0dgr

; (8)

where rc (in units of Siemens) is the linear scalar surface

conductivity, as in Eq. (5). The scalar equivalent refractive

index of graphene is given by n0;eq ¼
ffiffiffiffiffiffiffiffi
er;eq
p

. The tensor rep-

resentation has been dropped in Eq. (8) denoting an isotropic

material. Similarly, the equivalent nonlinear index n2;eq (in

units of m2=W) of a graphene sheet can be evaluated accord-

ing to Refs. 25 and 26 as

n2;eq ¼
3

4

v 3ð Þ
eq

er;eq

Z0 ¼
3

4

ir3= xe0dgrð Þ
1þ irc= xe0dgrð Þ

Z0; (9)

where Z0 ¼ 1=ðe0c0Þ � 377 X is the free space impendence

and r3 [in units of Sðm=VÞ2] is the scalar nonlinear surface

conductivity (Eq. (7)). Note that the sign of Refn2;eqg can

change according to the angle of the complex number er;eq:

assuming a purely imaginary r3, a sign-transition for

Refn2;eqg occurs for jRefn0;eqgj � jImfn0;eqgj. Nevertheless,

the real part of the nonlinear parameter (cNL) eventually con-

trols the sign and magnitude of the accumulated phase.18

The isotropic bulk representation of graphene is suffi-

cient for a limited range of practical applications. However,

this oversimplified approach fails to fully capture the inher-

ent anisotropy of sheet media in R3 and is found wanting in

more demanding problems. To amend this issue, the equiva-

lent bulk medium should be rendered anisotropic, with

respect to its linear and nonlinear susceptibility. In this

regard, any anisotropy contained in the linear and nonlinear

surface conductivity tensors should be inherited by the re-

spective susceptibility tensors. For instance, the anisotropic

�er;eq tensor will stem from the second-rank �rð1Þs tensor of Eq.

(4) as

�er;eq ¼
er;eq 0 0

0 1 0

0 0 er;eq

2
4

3
5; (10)

excluding the off-diagonal terms. Similarly, the nonlinear

fourth-rank susceptibility tensor �vð3Þeq will stem from the re-

spective surface conductivity tensor of Eq. (7), inheriting its

8 nonzero elements that will only depend on r3 or, equiva-

lently, on n2;eq and er;eq. Note that, for regular isotropic bulk

materials, �vð3Þ has a total of 21 nonzero elements that depend

on vð3Þ or on both n2 and er.
20 Finally, these anisotropic ten-

sors will have to be rotated when the sheet does not have a
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trivial orientation, as is the case of Eq. (10) where the sheet

was normal to a principal axis; expressions for these rota-

tions will be presented in Section II C.

Concluding, sheet or sheet-like (very thin) materials are

naturally modeled by a set of surface conductivities, rc and

r3, respectively. However, these materials can also be mod-

eled by an equivalent set of bulk-medium properties (er;eq

and n2;eq), Eqs. (8)–(9), which should be cast in tensor form

so that they additionally satisfy the inherent anisotropy of

sheet materials. The overruling parameter is the artificial

thickness attributed to the sheet or sheet-like material, which

is assumed to be very small compared to the operating wave-

length and the waveguide dimensions, as is the case for

graphene.

C. Finite element method

The FEM17 has been established as the definitive numer-

ical tool for modeling arbitrary cross-sectional nanophotonic

waveguides in the past decade. Graphene deviates from typi-

cally used bulk materials in the sense that its thickness is

negligible when compared to the wavelength or the size of

the waveguide features. Nevertheless, such two-dimensional

materials can be elegantly introduced in the FEM by means

of an electric surface conductivity and attributed to the inter-

face between two media that is occupied by the sheet.17 In

geometric terms, if a bulk material is modeled by a finite sur-

face (or volume), then a sheet material is modeled by the

edges (or faces) of the element, respectively. In our FEM

modeling, bulk materials are modeled by a linear and a non-

linear susceptibility tensor, �vð1Þ and �vð3Þ, respectively.

Similarly, sheet materials such as graphene are modeled by a

linear and a nonlinear surface conductivity tensor, �rð1Þs and

�rð3Þs , respectively. All elements of these tensors are complex

valued, and they can have frequency dispersion and/or inho-

mogeneous distribution.

Graphene can alternatively be modeled as an equiva-

lent bulk-medium layer of sub-nanometer thickness

(Section II B). However, discretizing very thin layers leads

to a large number of degrees of freedom (unknowns), even

for the versatile FEM, and hence to increased computation

times. In 2D geometries, that is, waveguide cross-sections,

this extra burden can be tolerable but it becomes excessive

in 3D structures; this further justifies the use of the sheet

representation for graphene.

The interface conditions for the electric and magnetic

fields between two bulk media sandwiching a conductive

sheet take the form

n� ð~E2 � ~E1Þ ¼ 0; (11a)

n� ð ~H2 � ~H1Þ ¼ ~Js; (11b)

where n is the vector normal to the interface, with direction

from medium 1 to medium 2, and the surface current density
~Js is subject to Ohm’s law. The discontinuity of the tangen-

tial H-fields, Eq. (11b), is proportional to the surface conduc-

tivity of the sheet, vanishing in its absence.

Employing the Galerkin FEM technique17 for the linear

regime, we form the vector wave equation by taking the curl

of Eq. (1a) and replacing it in Eq. (1b). We then take the dot

product with an appropriate weighting function ~Ea and inte-

grate over the entire volume of the problem V. Using integra-

tion by parts, assuming that the fields vanish on the

enclosing boundary of V and, finally, employing the surface

current as ~JsdsðrÞ, we deriveð ð ð
V

fðr � ~EaÞ � ½�l�1
r ðr � ~EÞ� � k2

0
~Ea � ½�er

~E�g dV

¼ ixl0

ð ð
S

~Ea � ½�rð1Þs
~E� dS; (12)

where the LHS is the standard FEM modeling of bulk media,

whereas the RHS term models conductive sheets and van-

ishes in their absence. Considering the simplest form of a

conductive sheet (Eq. (5)), the integral in the RHS term of

Eq. (12) can be cast in the formð ð
S

~Ea � ½�rð1Þs
~E� dS ¼ rc

ð ð
S

ðn� ~EaÞ � ðn� ~EÞ dS; (13)

where all the information of the tensor �rð1Þs is now contained

in rc and n, the scalar surface conductivity of graphene and

the normal vector, respectively.

When the form of linear conductivity does not permit

the above simplification, then the second-rank tensor �rð1Þs

appearing in Eq. (12) is computed by an appropriate rotation

from a reference orientation, �rð1Þs;ref [as, e.g., in Eq. (4)], using

the matrix multiplication formula

�rð1Þs ¼ R �rð1Þs;ref RT ; (14)

where the superscript T denotes a matrix transpose. The rota-

tion matrix R is a real 3� 3 array whose values are direction

cosines, defined by the angles between the corresponding

axes of the reference and the rotated coordinate systems. For

the rotation of the nonlinear fourth-rank conductivity tensor,

a generalized expression26 is employed

rð3Þs;jklm ¼
Xxyz

abcd

RjaRkbRlcRmd rð3Þs;abcd;ref ; (15)

involving summation over the indices fa; b; c; dg that corre-

spond to the cartesian axes {x, y, z}. Rpq is a scalar value, re-

ferring to the pq-element of the rotation matrix R. Equations

(14) and (15) equally hold for the linear and nonlinear sus-

ceptibility tensors, �vðnÞ, with n¼ 1 and 3, respectively.

Equation (12) can be used for full 3D-FEM modeling,

but in this work, we cast it in a 2D form, appropriate for

waveguide eigenmode analysis, assuming a longitudinally

invariant waveguide (Fig. 1). To this end, we can readily

substitute the volume and surface integrals with the surface

and line integrals, respectively, since the space of the prob-

lem is now the waveguide cross-section in the xy-plane. For

the spectral eigenmode analysis at a specified frequency, the

electric field is written as ~E ¼ eðx; yÞ expðþineffk0zÞ, where

eðx; yÞ is the transverse spectral envelope of a guided mode

and neff is its complex valued effective index. The results are

the transverse envelopes (eigenvectors) and effective indices
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(eigenvalues) of all guided modes of the waveguide. Each

mode’s propagation losses can be quantified by the propaga-

tion length, defined as the distance where the power drops to

1/e (�4.34 dB) and calculated by the imaginary part of the

effective index as Lprop ¼ k=ð4pImfneffgÞ.

D. Nonlinear waveguide parameters

In this section, we outline a NLSE formalism for the

study of nonlinear phenomena that originate from interaction

of guided electromagnetic waves in a narrow frequency band

(e.g., Kerr effect, TPA, or FWM).20–22 Nonlinear propaga-

tion is tackled by introducing the nonlinear polarization

(PNL) and current (JNL) as a perturbation to the linear solu-

tion: We extract waveguide modes by means of linear eigen-

mode analysis of the waveguide cross-section and use that

information to calculate the parameters of our NLSE model.

We focus on the calculation of the nonlinear parameter, cNL

in units of [m�1 W�1], that quantifies the nonlinearity-

induced phase shift and loss of each mode. This parameter,

along with the propagation length Lprop, is used for the

mode’s figure-of-merit (FoM) as F ¼ cNLLprop, in units of

W�1. It can be shown that the peak optical power required

for the manifestation of a Kerr-type nonlinear effect is inver-

sely proportional to F ,22 while an extra constraint for nano-

photonic circuits is footprint miniaturization. Overall,

graphene nanophotonic waveguide technology can be used

to satisfy at least two of these criteria: high nonlinear param-

eter, low losses, and small dimensions.

Standard NLSE techniques are used to calculate cNL for

a specific mode of a given waveguide.20,21 Returning to Eq.

(1b), we separate the linear and nonlinear polarization and

current and recast the equation in the following form:

r� ~H ¼ �ixe0 er �
�r 1ð Þ

ixe0

 !
~E � ix ~PNL þ

i

x
~JNL

� �
:

(16)

Comparing Eq. (16) to Eq. (5) of Ref. 21 or Eq. (3) of

Ref. 20, we note that the nonlinear current can be added to

the nonlinear polarization forming the overall perturbation

term ~P0NLðxÞ ¼ ~PNL þ ix�1~JNL. It can be inferred that cNL

can eventually be split into two parts, one resulting from the

mode-profile overlapping with nonlinear bulk media (cb) and

one from overlapping with nonlinear sheet media (cs), which

is the case of graphene.

Assuming a single-mode waveguide for simplicity and

following the procedure described in Ref. 21, we write the

electric field as ~Eðr;xÞ¼ ~Aðz;x�x0Þeðx;y;x0Þexpðþib0zÞ=ffiffiffiffi
N
p

, where ~A is the slowly varying spectral field envelope,

x0 is the operating frequency, e is the transverse envelope

profile, and b0 is the mode propagation constant at x0. The

normalization constant N is measured in Watt, so that j ~Aj2
represents power, and is given by N¼0:5j

Ð Ð
ðe�h�Þ �zdSj;

the integral is calculated over the waveguide cross-section,

while the integrand corresponds to the time-averaged guided

power density, derived from the Poynting vector. The defini-

tion of N is related to the mode orthogonality32 and holds for

lossless and lossy waveguides alike.22 Also, in other formu-

lations, the constant N is defined as the real part of the inte-

gral, instead of its absolute value, and omits the 0.5 factor,20

that is, N0 ¼Ref
Ð Ð
ðe�h�Þ �zdSg�2N; the two variations

are practically equivalent. The time-domain expression for

the nonlinear propagation equation in a single-mode wave-

guide is given by

@A

@z
¼ ix0ei x0t�b0zð Þ

2
ffiffiffiffiffiffi
4N
p

ð ð
e� � PNL þ

i

x0

JNL

� �
dSþ LA; (17)

where Aðz; tÞ is the Inverse Fourier Transform of the spectral

envelope ~Aðz;x� x0Þ and the term in parentheses in the

RHS corresponds to the modified nonlinear polarization P0NL,

assuming that JNL is constant over the spectral region near x0.

Linear contributions to Eq. (17), namely, frequency dispersion

and propagation losses, are contained in the operator L.

Finally, the extension to multimode propagation in nonlinear

waveguides is straightforward.20–22

Replacing the expressions of the nonlinear polarization

PNL and conductivity JNL in Eq. (17), we arrive at the fol-

lowing expression for the Continuous Wave regime:

@A

@z
¼ i cb þ csð ÞjAj2A� 1

2Lprop

A; (18)

where the nonlinear parameters are defined as

cb ¼
3x0�0

4 2Nð Þ2
Xxyz

jklm

ð ð
v 3ð Þ

jklme�j eke�l em dS; (19a)

cs ¼ i
3

4 2Nð Þ2
Xxyz

jklm

ð
r 3ð Þ

s;jklme�j eke�l em d‘; (19b)

originating from the bulk and sheet material nonlinearity,

respectively. Note how the imaginary part of �rð3Þs is responsi-

ble for the sheet-induced nonlinear phase shift and that the

integration is now carried over the graphene sheet instead of

the waveguide cross-section. Furthermore, the nonlinear

absorption processes are introduced through the real part of

�rð3Þs , similarly to the inclusion of the TPA parameter as an

imaginary part in the nonlinear index n2 of a bulk medium.20

Assuming the simplest forms of �vð3Þ [e.g., Eq. (14) of

Ref. 20, for q¼ 1] and �rð3Þs [Eq. (7)], the tensor contraction

operations implied by the quad summation in Eqs. (19) can

be simplified to

cb ¼
x0�0

2Nð Þ2
ð ð

v3

1

2
jej4 þ 1

4
je � ej2

� �
dS; (20a)

cs ¼ i
1

2Nð Þ2
ð

r3

1

2
jekj4 þ

1

4
jek � ekj2

� �
d‘; (20b)

respectively, where ek is the electric field component of the

transverse envelope that is tangential to the conductive sheet.

v3ðx; yÞ and r3ðx; yÞ are scalar complex values for the nonlin-

ear susceptibility and surface conductivity, respectively, that

can be inhomogeneous in the waveguide cross-section.

Equations (19) and (20) not only provide a rigorous

method for the evaluation of the nonlinear parameters but
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also enable the comparison of the bulk and sheet nonlinearity

contributions. In this way, the comparison is made between

meaningful parameters referring to waveguide modes and

not between intermediate quantities such as material proper-

ties or geometric attributes. The nonlinear parameter for

sheet materials emerges naturally through the current density

(Eq. (17)), thus extending a framework that conceptually

refers to waveguides comprising only bulk materials.

Moreover, Eq. (17) is general in the sense that, in theory, it

can model any nonlinear phenomena as long as we have

knowledge of their nonlinear polarization and current. The

only approximations made up to this point are that the non-

linear terms are small perturbations to the respective linear

terms and that they have an instantaneous response.

Consequently, a similar perturbation approach can also be

used to model nonlinear guided-wave phenomena involving

vastly different frequency bands, for example, THG14,23 or

SHG.33 In these cases, phase-matching between the modes at

different frequency bands must be satisfied and, specifically

for SHG, this is usually accomplished using some sort of per-

iodic spatial alteration of the waveguide along the propaga-

tion direction.

III. PHYSICAL PROPERTIES

In this section, we will briefly discuss the physical prop-

erties of graphene monolayers and provide a discussion on

the magnitude of graphene nonlinearity.

A. Linear conductivity

The linear part of the surface conductivity �rð1Þs , in its

simplest scalar form as rc in Eq. (5), consists of contribu-

tions from intraband and interband mechanisms for the

absorption of photons of energy Eph ¼ �hx by a graphene

monolayer/sheet. The overall scalar linear surface conductiv-

ity is rc ¼ rc;intra þ rc;inter (in Siemens) and has a real part

and an imaginary part, which affect the losses and phase ve-

locity of waves propagating in its vicinity, respectively. The

conductivity of graphene can be tuned via chemical doping

or by external electrostatic biasing; both these effects are

assumed enclosed within a single parameter, the chemical

potential (lc), which quantifies the Fermi level difference

with respect to the Dirac point. This parameter typically

ranges from zero, which corresponds to undoped (pristine)

and unbiased graphene, up to 61 eV.34 Finally, under the

presence of external magnetic biasing, graphene can exhibit

anisotropic linear conductivity, described by rs;xz ¼ �rs;zx 6¼
0 in Eq. (4) and referred to as the local Hall effect re-

gime;28,35 this configuration does not come into the present

study.

The intraband contribution term is given by the Drude-

like expression34,36

rc;intra ¼ i
e2lc

p�h2 xþ i=s1ð Þ
� T lc

2kBT

� �
; (21)

where T ðxÞ ¼ x�1ln½2 coshðxÞ�, T is the absolute tempera-

ture, and s1 is the relaxation time for intraband absorption,

which in a phenomenological way takes into account losses

due to electron impurity, electron defect, and electron-

phonon scattering.37 This relaxation time is sometimes

expressed in energy or eV units as C ¼ �h=ð2sÞ.34 In the opti-

cal regime, s1 � 10 fs,38 whereas values in the range of 40

ps have been deemed feasible for the THz regime at room

temperature.39 In practical configurations, the temperature-

dependent term can be dropped from Eq. (21) as T ! 1 for

x> 1, that is, when lc > 50 meV for T¼ 300 K.

The interband contribution term has a more complicated

dependence on lc, capturing the physical properties of gra-

phene at the transition point lc � 0:5�hx. Specifically, for

lc > 0:5�hx, the interband absorption mechanism vanishes

and so does the real part of the interband conductivity term,

whereas a negative peaking of the imaginary part is observed

at lc ¼ 0:5�hx (Fig. 2(a)). This term is negligible in the THz

region, except for the ideal configuration of pristine gra-

phene. An expression for the interband term in the optical re-

gime is extracted in Ref. 34

rc;inter ¼ i
e2

4p�h
ln

2jlcj � �h xþ i=s2ð Þ
2jlcj þ �h xþ i=s2ð Þ

� �
; (22)

where s2 � 1:2 ps is the relaxation time for interband

absorption.38 Equation (22) holds for �hx; lc 	 kBT, that is,

neglecting the effect of temperature, an approximation that is

valid at optical frequencies, T � 300 K and lc > 0:1 eV.

Expressions taking into account the temperature dependence

of the interband term can be found in Refs. 35 and 36.

The equivalent bulk medium parameters of graphene

(Eq. (8)) as a function of lc are also depicted in Fig. 2. Note

that a negative Referg of large magnitude is the necessary

condition for highly confined TM polarized Surface Plasmon

Polariton (SPP) waves propagating along the interface of

graphene with a dielectric medium. Specifically, for a guided

plasmonic mode at the interface of a metal (em) with a dielec-

tric (ed), it is required that Refemg < 0 and jemj 	 jedj. For

graphene, this plasmonic regime requires a positive imagi-

nary part in the linear conductivity rc, assuming the e�ixt

convention. This behavior is especially pronounced in lower

frequencies, that is, in the THz regime,28 leading to

extremely high confinement and effective mode indices at

the expense of losses. In the optical regime, it is negligible

and becomes barely appreciable at very high lc, for example,

in the right side of Fig. 2(b).

FIG. 2. Real and imaginary parts of graphene: (a) overall surface conductiv-

ity, (b) equivalent relative permittivity, (c) equivalent refractive index, as a

function of chemical potential lc at k¼ 1550 nm. All curves are symmetric

for negative lc.
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B. Nonlinear conductivity

The nonlinear conductivity of graphene in the optical re-

gime has been a subject of much debate over the last years,

ever since the first experimental evidence of remarkably

large values.10 However, the extracted values for the magni-

tude of nonlinear effects in graphene show discrepancies and

strongly depend on measurement method, frequency, and

sample preparation; the reader is referred to the introduction

of Ref. 14 for a review of the pertinent state of the art. In this

work, we will briefly present the existing theoretical models

for graphene’s nonlinearity to provide an estimation of its

magnitude.

The magnitude of the Kerr effect, used for all-optical

signal processing,15 is proportional to the imaginary part of

the nonlinear surface conductivity. For lack of experimental

evidence, TPA-related phenomena are not discussed here,

but they can be easily introduced as a real part to the nonlin-

ear conductivity. Assuming the simplest form of the fourth-

rank tensor �rð3Þs (Eq. (7)), the corresponding scalar nonlinear

surface conductivity in the optical regime can be approxi-

mated by10

r3;opt ¼ �i
9 e4 v2

F

32 x4 �h3
; (23)

where vF � c0=300 is the Fermi velocity in graphene. This

expression has been derived under the conditions kBT <
jlcj < �hx and the perturbation limits jEj 
 �hx2=ðevFÞ and

jEj 
 jlcjx=ðevFÞ for the electric field. For the reference

wavelength of k¼ 1550 nm, Eq. (23) produces a value in the

order of r3 � �i10�23 ½Sðm=VÞ2�.
Another theoretical model for graphene nonlinearity in

the optical regime is presented in Ref. 14, providing closed-

form expressions for two independent elements of the non-

linear surface conductivity tensor �rð3Þs , namely, rð3Þs;jjkk and

rð3Þs;jkkj � rð3Þs;jkjk, where j and k are cartesian components tan-

gential to the sheet. The number of nonzero elements of the

fourth-rank tensor is eight, just like in the simplest case of

Eq. (7) where only one element was required, r3 � rð3Þs;xxxx.

At k¼ 1550 nm and assuming lc ¼ 0:5 eV, this model pre-

dicts a r3 with an imaginary part that is an order of magni-

tude larger compared to Eq. (23), along with an equally large

real part that models TPA in graphene and vanishes for

lc > �hx. Finally, this model predicts a passage from a self-

focusing to a self-defocusing nonlinearity at lc � 0:7 eV.

Returning to the most general form of �rð3Þs tensor, we

can allow for 6 more nonzero elements (total of 14) with 3 of

them being independent, while still satisfying the require-

ment for zero current density normal to the graphene sheet.

The additional six elements are rð3Þs;jjll; rð3Þs;jljl, and rð3Þs;jllj, with j
denoting the two tangential components and l the normal

component. Interestingly, these extra elements imply an

interaction of the sheet with the electric field component that

is normal to the sheet. Assuming that all six of them are

equal to a value in the order of r3=3 (total of two independ-

ent elements in the tensor) has been numerically shown to

boost the overall nonlinearity of a graphene-clad tapered

nanofiber.31 However, there is presently no experimental

evidence or theoretical model that predicts the magnitude of

those elements. The models for the �rð3Þs tensor discussed are

recapitulated in Table I.

Finally, an expression for the scalar nonlinear conduc-

tivity in the THz regime can be extracted from Ref. 40

r3;THz ¼ �i
3 e4v2

F

32 x3�h2lc

: (24)

The main difference between this expression and Eq. (23) is

the replacement of the photon energy (�hx) by the chemical

potential (lc) in the denominator. At 10 THz and lc ¼ 0:3
eV, the nonlinear surface conductivity is r3 � �i10�19

½Sðm=VÞ2�, that is, more than three orders of magnitude

larger than the optical regime. This can lead to very high

nonlinear parameter values, in conjunction with the plas-

monic confinement exhibited in the THz band, as discussed

in the end of Section III A.

C. Assessing graphene nonlinearity

The technologically mastered materials with the highest

nonlinear index (n2) in the optical band include

semiconductors (silicon,20 2:5� 10�18 m2=W or gallium

arsenide,41 10�17 m2=W), inorganic glasses (chalcogenides,42

10�17 m2=W), and organic polymers (DDMEBT,43

1:7� 10�17 m2=W). The real part of n2 is typically considered

beneficial, whereas the imaginary part constitutes a nonlinear

loss mechanism and is thus undesirable; ideally, one would

require Refn2g 	 Imfn2g, but in this work, we will only

focus on the real part of n2 as a metric of material nonlinearity.

In order to preliminarily assess graphene’s potential for

nonlinear applications in the optical regime, we would need

to compare its nonlinearity to that of the aforementioned

bulk materials, by attributing an equivalent bulk nonlinear

index (n2;eq) to graphene,15,44 according to Eq. (9).

Alternatively, one can assess the value of graphene’s equivalent

nonlinear index without direct knowledge of the nonlinear sur-

face conductivity rð3Þs . For instance, Ref. 15 estimates n2;eq

via the saturation intensity assuming the intensity-dependent

equivalent susceptibility vð1Þeq ðIÞ ¼ vð1Þeq =ð1þ I=IsatÞ, where

vð1Þeq ¼ irc=ðxe0dgrÞ is a function of the scalar linear surface

conductivity rc, as in Eq. (8). Furthermore, assuming low inten-

sities and using a first-order Taylor expansion for vð1Þeq ðIÞ, the

TABLE I. Number of elements in graphene’s nonlinear surface conductivity

tensor �rð3Þs .

Source Nonzeroa Independent

Hexagonal 2D crystalb 8þ 6 3þ 3

Ref. 31 8þ 6 1þ 1

Ref. 14 8 2

Simplest model, Eq. (7) 8 1

aAssuming the tensor is expressed in a coordinate system that has one car-

tesian component normal to the graphene sheet. In arbitrary orientations,

all 81 elements of the fourth rank tensor can become nonzero, according to

Eq. (15).
bDerived from D6h or C6v dihedral symmetry groups.26
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equivalent intensity-dependent refractive index of graphene’s

bulk approximation can be written as neqðIÞ � ½1þ vð1Þeq ðIÞ�0:5

¼n0;eqþn2;eqI. In the previous expression, n0;eq¼½1þvð1Þeq �0:5
and

n2;eq � �
v 1ð Þ

eq

2Isatn0;eq

; (25)

where Isat ¼ jEsatj2=ð2Z0Þ is the saturation intensity (in units

of W/m2) and Esat ¼ 2xlc=ðevFÞ is the saturation field

strength. It should be noted that Ref. 15 arrives at a slightly

different expression, without n0;eq in the denominator, owing

to his initial assumption that neqðIÞ � 0:5vð1Þeq ðIÞ. Relying on

the latter, Ref. 44 includes the full expression of the linear

conductivity, with both interband and intraband contribu-

tions, in search of an optimized value of n2;eq with respect to

the chemical potential lc.

Figure 3 presents the jRefn2;eqgj of graphene as a func-

tion of lc for various models: The black and blue curves cor-

respond to Eq. (9) using the rð3Þs;xxxx derived from the models

in Refs. 10 and 14, respectively; the red curve corresponds to

Eq. (25) based on the saturation intensity approach.15 The

solid and dotted parts of the curves correspond to positive

and negative values of Refn2;eqg, respectively; the notable

sign-transitions are attributed to sign transitions of Imfrcg
(Fig. 2(a)), which come into Eq. (9) via Refer;eqg (Fig. 2(b)).

Apparently, the models of Fig. 3 diverge considerably in the

entire range of lc, indicative of the different approximations

employed. Nevertheless, we can deduce that the equivalent

n2 of graphene can be as high as 10�15 m2=W, that is, one or

two orders of magnitude larger than the aforementioned bulk

nonlinear materials. A recent experimental measurement of

graphene nonlinearity using THG from oblique incidence of

789 nm radiation on a graphene/SiO2 configuration23

revealed a response three orders of magnitude larger com-

pared to bare SiO2; it can be inferred that the equivalent non-

linear index of graphene for THG is n2;eq > 10�17 m2=W.

Endeavoring to gauge graphene-comprising waveguide

nonlinearity, one needs to keep in mind that it is not deter-

mined by the properties of its constituting materials (n2 or

r3) but from its overall nonlinear parameter (cNL). In this

sense, comparing the nonlinearity of bulk to the equivalent

one for sheet materials is both deficient and problematic, as

it contains a number of pitfalls. The most common mistake

is neglecting the anisotropic nature of sheet materials in 3D

waveguides, as was discussed in Section II B, especially for

the equivalent nonlinear susceptibility tensor �vð3Þeq . For

instance, Ref. 44 calculates a giant cNL for a hybrid-

plasmonic waveguide mode; however, it overlooks the fact

that the electric field is predominantly polarized perpendicu-

larly to the graphene sheet and therefore does not interact

with it (Eq. (20b)). Another erroneous practice is to calculate

the overall cNL according to the simplified formula

cNL � k0n2;eff=A, where n2;eff might be the nonlinear index

of the waveguide core or some spatially averaged variant of it

and A might be the effective mode area or the cross-section

area of the nonlinear material. In any case, this formula

applies only for bulk materials and weakly guiding structures

and fails to capture the behavior of ultra-thin sheet materials,

such as graphene, used in nanophotonic 3D waveguides. To

summarize, we stress that the material nonlinearity itself should

always be treated in its natural representation (i.e., as �vð3Þ for

bulk and as �rð3Þs for sheet materials), avoiding “equivalent” rep-

resentations whenever possible. Moreover, especially in the

case of nanophotonic waveguides, rigorous tensorial formula-

tions [e.g., Eqs. (19)] are necessary for the calculation of the

nonlinear parameter cNL.

IV. NONLINEAR PARAMETER CALCULATION

In this section, we will demonstrate the results of our

formalism and present them alongside the performance

assessment of nonlinear waveguides comprising both sheet

and bulk nonlinear materials, such as graphene and silicon,

respectively. We consider several optical waveguide arche-

types, namely, a silicon wire, a metal stripe, and a metal-in-

sulator-metal (MIM) slot, whose cross sections are depicted

in Figs. 4(a)–4(c), respectively. Moreover, we will show

how the various pitfalls discussed in Section III C manifest

in these waveguide configurations. Finally, we will use the

same formalism to calculate the nonlinear parameter of the

plasmonic mode supported by a graphene nanoribbon (GNR)

waveguide (Fig. 4(d)) operating in the THz band.

In all optical waveguides investigated in this section, the

graphene nonlinear surface conductivity, r3;opt, is given by

Eqs. (7) and (23). Similarly, its linear surface conductivity,

rc, is given by Eqs. (21) and (22) for T¼ 300 K, lc ¼ 0:5
eV, s1 ¼ 10 fs, and s2 ¼ 1:2 ps, at k¼ 1550 nm. In this

wavelength range, Re frcg significantly increases when

jlcj < 0:4 eV (Fig. 2(a)) owing to the contribution of the

interband absorption mechanism that eventually leads to

higher propagation losses. One final general remark on all

the waveguides investigated, the group velocity dispersion

propagation length, attributed to material and waveguide dis-

persion, was found to be much larger than the propagation

length associated with either nonlinear effects or losses and

thus will be omitted from our calculations.

First, we examine a typical Si-wire waveguide fabri-

cated on an oxide substrate and overlaid with an infinite gra-

phene sheet normal to the y-axis (Fig. 4(a)). Silicon is

FIG. 3. Absolute value of the real part of the equivalent nonlinear index of

graphene, jRefn2;eqgj, as a function of the chemical potential lc (Fermi

level). The solid and dotted parts of the curves correspond to positive and

negative values of Refn2;eqg, respectively.
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characterized by n2;Si ¼ 2:5� 10�18 m2=W and n0;Si ¼ 3:48.

Silicon dioxide nonlinearity is neglected and n0;SiO2
¼ 1:45.

Furthermore, we note that silicon’s nonlinear third-order sus-

ceptibility tensor, �vð3Þ, is isotropic (q¼ 1) and that the only

source of losses is Re frcg.
Employing the procedure described in Section II C, we

numerically extract the TE and TM eigenmodes supported

by the waveguide and notice that the mode distributions are

virtually unaffected by the presence of the graphene sheet.

Subsequently, we calculate the nonlinear parameters and

propagation losses versus the Si-wire width, while its height

is fixed at 340 nm. The results are depicted in Fig. 5 where

we note that graphene nonlinearity, cgr, is much lower than

the bulk silicon nonlinearity, cSi. It is noteworthy that

although graphene does indeed exhibit a large equivalent

nonlinear index, this does not necessarily translate into an

equally large nonlinear parameter, as witnessed in Fig. 5(a).

The misunderstanding usually takes place in the use of

cgr ¼ k0n2;eq=A, or similar formulas, as argued in Section

III C: Using the above equation, we mistakenly attribute the

huge nonlinear index to the whole area occupied by the

mode profile whereas graphene only interacts with a fraction

of that area. Another interesting observation, contrary to

intuition, is that the TM mode has a larger cgr than its TE

counterpart; the explanation lies with the position of the gra-

phene sheet with respect to the modes’ intensity distribution,

depicted in the insets of Fig. 5(b). Specifically, on one hand,

the TE mode’s dominant transverse E-field component, Ex, is

tangential to graphene but only marginally overlaps with it.

On the other hand, the TM mode’s dominant transverse com-

ponent, Ey, is normal to the sheet but it also has a relatively

large longitudinal component, Ez, that significantly overlaps

with graphene. Finally, we note that the higher cgr goes

hand-in-hand with higher losses; for comparison, typical

losses in fabricated Si-wire waveguides are in the order of

1 dB/cm owing to the surface roughness.

To increase cgr, one would either increase graphene non-

linear conductivity, if possible, or attempt to engineer the

waveguide configuration. In Fig. 5, while we have chosen a

TE mode so as to have the dominant electric field component

tangential to graphene, the graphene sheet is placed outside

the area where the tangential electric field is maximized. To

provide further insight in this optimization design, we now

consider a 400-nm-wide and 340-nm-thick Si-wire wave-

guide where the graphene sheet is artificially offset and

moved within the silicon core, as shown in the inset of Fig.

6(a). As expected, for the TE mode, graphene nonlinearity

contribution becomes comparable to bulk-silicon contribu-

tion, cSi � 110 W�1m�1, when the sheet is placed close to

the middle of the waveguide. However, this configuration

may not be easily fabricated and it also exhibits increased

losses (Fig. 6(b)).

Moving on to plasmonic structures, we will now focus

on the metal stripe and MIM waveguides depicted in Figs.

4(b) and 4(c), respectively. In both cases, the metal film is

20 nm thick silver characterized by n0;Ag ¼ 0:145þ 11:4i
and negligible nonlinearity at k ¼ 1550 nm,22 whereas the

rest of the material properties are the same as in the previous

structure. The metal stripe waveguide is chosen as an arche-

typical plasmonic waveguide, where we stress that the plas-

monic mode we used has a TM polarization and is

asymmetric along the y-axis. This is not to be confused with

FIG. 4. Nonlinear waveguide configurations investigated. Graphene sheets

are depicted by thick red lines and all critical dimensions are annotated. (a)

Silicon wire, (b) metal stripe, (c) MIM slot waveguides, overlaid with an in-

finite graphene sheet, for use in the optical band. (d) Air-suspended GNR

waveguide, for use in the THz band.

FIG. 5. (a) Numerically calculated nonlinear parameters for a 340 nm thick

Si-wire waveguide overlaid by a graphene sheet, as a function of the Si-wire

width. The contributions of silicon and graphene nonlinearity, cSi and cSi,

respectively, are distinguished. Solid and dotted curves correspond to TE

and TM modes, respectively. (b) Linear propagation losses owing to gra-

phene conductivity as a function of the Si-wire width. The insets show the

TE and TM mode intensity profiles for the electric field components tangen-

tial to the graphene sheet, I tan ¼ jexj2 þ jezj2, for the Si-width of 400 nm.

FIG. 6. Numerically calculated (a) sheet nonlinear parameter csheet and (b)

linear propagation losses, for a h¼ 340-nm-thick and 400-nm-wide Si-wire

waveguide, as a function of the normalized offset of the graphene sheet from

the wire’s top side. Solid and dotted curves correspond to TE and TM

modes, respectively. The bulk nonlinearity is virtually unperturbed by the

location of the graphene sheet, cbulk � 110 m�1W�1.
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the more commonly employed symmetric “long range” TM

mode, also supported by the stripe; we verified that the latter

has small potential for nonlinear applications due to its very

poor confinement. The MIM waveguide structure takes

advantage of the metal edge modes; to further elaborate,

there are two reasons for choosing a MIM configuration:

First, the mode is forced into a TE polarization by the slot

geometry, thus ensuring that the dominant electric field com-

ponent is tangential to the graphene sheet and, second, the

metallic interface ensures high confinement as the metal film

thickness decreases.

The numerically calculated nonlinear parameter and

propagation losses for the metal stripe waveguide are pre-

sented in Fig. 7(a). We note that the nonlinear parameter is

larger than the Si-wire configuration, and we affirmed that it

can be further increased by reducing the metal stripe thickness

below 20 nm. The opposite holds for the propagation length,

Lprop, which poses a limit to the overall nonlinear performance

of the metal stripe. Finally, graphene losses at lc ¼ 0:5 eV

were found to be negligible compared to silver losses: switch-

ing off the silver losses results in a tenfold increase to the

mode’s Lprop. The numerical study of the MIM slot configura-

tion is presented in Fig. 7(b). Lowering the waveguide dimen-

sions improves the mode confinement and consequently

enhances the nonlinear parameter, as is shown in Fig. 7(a),

and we affirmed that the same holds for smaller slot gaps. In

fact, the evaluated nonlinear parameter can be six orders of

magnitude larger than in the Si-wire case but again with much

larger losses. For low slot gaps, the losses are equally due to

graphene and bulk-metal conductivity, whereas for larger slot

gaps, the losses are mainly due to the bulk-metal, as in the

stripe case. The large increase of the nonlinear parameter is

mainly attributed to the high field confinement. Moreover, as

the main contribution to the nonlinear parameter stems from

the overlap of the graphene sheet with the mode within the

slot, the nonlinear parameter is especially sensitive to the slot

gap. Further optimizing the design, the metal film thickness

should be as small as possible in order to squeeze the mode

close to the graphene sheet. Finally, replacing the MIM with a

silicon slot structure would be beneficial to the overall losses,

as we dispose of the bulk conductor, but it would not lead to

equally high nonlinear parameters; this is because the silicon

refractive index is not high enough to retain the same level of

confinement that is exhibited by the MIM slot waveguide for

a 20 nm thickness. For the same reasons, hybrid silicon plas-

monic structures also exhibit lower performance in terms of

the F ¼ cNLLprop nonlinear figure of merit.22

The considerably higher value of csheet in plasmonic

waveguides compared to dielectric ones is due to the

extreme field confinement on metal/dielectric interfaces,

which is a characteristic of all SPP waveguides; this con-

finement is especially pronounced near corners or acute fea-

tures of the metal. Given that graphene is placed in the

vicinity of these interfaces, it interacts strongly with the E-

field of the waveguide and gives rise to high csheet. On the

contrary, all-dielectric waveguides such as the Si-wire can-

not reach the levels of confinement offered by plasmonic

structures due to the comparatively limited index-contrast,

that is, er ¼ 3:482 vs. 1 (for Si-wires) compared to Referg
¼ �130 vs. 1 (for silver-based plasmonic guides). Hence,

although graphene is again placed where the tangential E-

field is maximized (Fig. 6), the csheet cannot profit as much

from the field/graphene overlap implied in Eq. (19b) or

(20b). On the negative side, increased confinement in plas-

monic waveguides comes together with high losses from the

bulk metal, something that eventually limits their potential

for nonlinear applications.

Finally, we numerically calculate the nonlinear parame-

ters for the plasmonic mode supported by the air-suspended

1-lm-wide GNR waveguide (Fig. 4(d)) in the 10 THz band.

Graphene nonlinear conductivity is evaluated through Eq.

(24), whereas its linear conductivity is evaluated through the

same formulas that we used in the optical regime, but with

s1 ¼ 40 ps;45 the interband contribution is negligible assum-

ing that the chemical potential is lc 	 0:5�hx � 0:02 eV.

The GNR mode’s nonlinear parameter and propagation

length as a function of lc are presented in Fig. 8. The nature

of this mode is similar to the asymmetric TM plasmonic

mode studied in Fig. 7(a) and its electric field distribution for

lc ¼ 0:3 eV is depicted in the three insets; the linear conduc-

tivity and effective index are also given. The resulting non-

linear parameter values are excessively large, which is

somewhat anticipated owing to the theoretically predicted

nonlinear conductivity in the THz regime that is three orders

of magnitude larger than the optical regime. Moreover, the

mode supported is extremely confined at the two edges of

the ribbon (see insets of Fig. 8), which further enhances the

waveguide nonlinearity. Actually, the GNR in the THz re-

gime can be considered as the ultimately thin version of the

plasmonic-stripe waveguide, where graphene acts both as the

metal and as the nonlinear material. Although a direct com-

parison with optical waveguide nonlinearity values is not

apt, nevertheless the GNR nonlinearity values demonstrate

its potential despite the losses that remain considerable; the

propagation length is in the order of 10k for lc ¼ 0:3 eV. On

a final interesting note, tuning the chemical potential from

0.1 to 0.5 eV, for instance through electrical gating, one can

tweak the nonlinearity through almost three orders of

FIG. 7. Numerically calculated sheet nonlinear parameter csheet and propaga-

tion length Lprop for the highly confined (a) asymmetric TM mode supported

by the metal stripe waveguide as a function of the stripe width and (b) TE

mode supported by the MIM slot waveguide as a function of the slot gap.

The metal in both plasmonic waveguides is a 20 nm thick silver film, and it

is overlaid with an infinite graphene sheet. The Lprop curves include the con-

tribution of both bulk-silver and graphene-sheet conductivities.
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magnitude and at the same time only lose one order of mag-

nitude in the propagation length.

V. CONCLUSION

A rigorous electromagnetic modeling for arbitrary cross-

section nonlinear nanophotonic waveguides that comprise

both bulk and sheet media has been presented. The sheet rep-

resentation of two-dimensional materials, such as graphene, is

superior to the equivalent bulk representation commonly

employed, both in terms of consistency with physical proper-

ties and computational burden. Utilizing the FEM as a numer-

ical tool and extracting graphene’s parameters from

theoretical models, we calculated the nonlinear parameter of

several types of graphene-comprising waveguides. The per-

formance of these nonlinear waveguides for all-optical switch-

ing applications is not remarkable in the optical regime, with

the exception of the MIM slot configuration that exhibits a

quite large nonlinear parameter and tolerable losses.

Nevertheless, convergence between theoretical and experi-

mental results will be required to consolidate those conclu-

sions, as recent experiments12 hint at an order of magnitude

larger nonlinear surface conductivity for graphene in the opti-

cal frequencies, compared to the one predicted by existing the-

oretical models. Finally, using the same formulation, we

identified the promising potential for nonlinear applications in

the THz spectral region exhibited by graphene nanoribbon

waveguides.
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