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Two-dimensional (2D) or sheet materials have been recently recognized as fascinating materials
for nonlinear photonics. Here, we develop a rigorous mathematical framework based on perturbation
theory and temporal coupled-mode theory capable of analyzing third-order, χ(3), multichannel non-
linear processes in resonant systems comprising 2D materials. The framework is applied to model
degenerate four-wave mixing in a guided-wave graphene plasmon-polariton resonant structure, con-
sisting of a standing-wave resonator directly coupled to access waveguides. The results obtained with
the proposed framework are compared with full-wave finite-element simulations revealing excellent
agreement. Besides being accurate and efficient, our framework allows for selectively incorporating
different nonlinear phenomena, identifying their unique impact on the nonlinear response and pro-
viding valuable physical insight. We are, thus, able to specify the optimal operating point leading
to maximum conversion efficiency for the generated wave in a multi-parameter space. In addition,
we identify unstable operating regimes exhibiting optical bistability or limit cycles, thoroughly char-
acterizing the component performance. Our framework enables the study of diverse multichannel
phenomena (frequency generation, frequency mixing, and parametric amplification) in the thriving
field of 2D material photonics, thus allowing for assessing the potential of these exciting materials
for practical nonlinear applications.

I. INTRODUCTION

Four-wave mixing (FWM) and its more popular vari-
ant, degenerate four-wave mixing (DFWM), which en-
tails the interaction of two input waves, are invaluable
third-order, χ(3), nonlinear processes for obtaining effi-
cient frequency mixing, achieving parametric amplifica-
tion of an existing wave, or generating optical frequency
combs. First observed theoretically and experimentally
in nonlinear optical fibers,1 FWM has also witnessed a
surge of activity in nanophotonic waveguide structures2–4

and resonant systems.5,6 Especially in the latter, FWM
has gathered considerable attention due to the intensity
build-up allowing for high conversion efficiency with mod-
erate input power, their small footprint (especially ring
resonators), and the fact that the phase-matching con-
dition can be inherently satisfied by the resonator spec-
trum. Realizations in a variety of photonic platforms
have been successfully demonstrated with standard man-
ufacturing techniques and monolithic integration.7–11

Thus far, mainly bulk nonlinear materials have
been incorporated in resonator structures to intro-
duce nonlinearity. In resonant systems with bulk
nonlinearity, multichannel processes, such as second-
and third-harmonic generation, and degenerate four-
wave mixing, can be efficiently studied with a cou-
pled mode theory (CMT) framework, as shown with
photonic crystal structures.11–15 However, atomically-
thin 2D materials (most notably graphene,16 transi-
tion metal dichalcogenides,17 hexagonal boron nitride,18

black phosphorus,19 etc.) have been recently recog-
nized as fascinating materials for photonics and nonlinear

applications.20 In fact, the most popular 2D material,
graphene, has been examined for harmonic frequency
generation and wave mixing in free-space photonics,21–24

revealing its highly nonlinear electromagnetic response in
combination with its unique linear properties.25–28 Cap-
italizing on the capability of integrating and dynami-
cally controlling graphene in photonic chips,29 theo-
retical and experimental works have recently appeared
in the literature demonstrating guided-wave compo-
nents, spanning from graphene-covered waveguides30,31

to graphene-covered photonic crystal resonators32 and
silicon rings,33 all focusing on the manifestation of effi-
cient four-wave mixing enabled by the extreme nonlinear-
ity of graphene. Still, an efficient and flexible numerical
tool that can model multichannel nonlinear processes in
resonant structures comprising 2D materials is missing
from the literature.

In this work, we construct a strict mathematical frame-
work that can accurately and efficiently analyze fre-
quency generation and wave-mixing phenomena in such
structures, allowing to obtain useful design rules and
physical insight. Our framework is based on perturba-
tion theory and coupled-mode theory, in direct analogy
with our previous works on single-channel phenomena
like self-phase modulation, two-photon absorption, opti-
cal bistability, and saturable absorption.34–36 It allows
for treating 2D materials as infinitesimally thin, avoid-
ing erroneous results associated with effective bulk ma-
terial representations. Importantly, we also take into ac-
count material dispersion in the linear properties since
graphene, for example, is highly dispersive, which has
been proven to significantly affect the linear and nonlin-
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ear response of resonant devices.34

Using a simple, yet representative, example of a
graphene-based standing-wave resonator in the THz fre-
quency band, we highlight the accuracy of the developed
framework by comparing with full-wave simulations. Fur-
thermore, we elegantly use CMT to identify the optimal
operating point leading to maximum conversion efficiency
in a multi-parametric space, paving the way for the de-
sign of more advanced photonic resonant devices. Fi-
nally, the capability of the framework to treat system
instabilities, such as optical bistability and limit cycles is
demonstrated as part of the thorough device performance
analysis.

II. MULTICHANNEL THEORETICAL

FRAMEWORK FOR NONLINEAR

RESONATORS COMPRISING 2D MATERIALS

We first construct a theoretical framework capable of
handling multichannel nonlinear processes in resonant

structures comprising bulk and sheet nonlinear materi-
als. The framework is based on two pillars: perturba-
tion theory37 and temporal coupled-mode theory.38,39 It
combines a number of advantageous characteristics: it is
highly accurate, it is computationally efficient, it allows
for incorporating diverse nonlinear phenomena as well as
studying a multitude of nonlinear processes, and it cap-
tures in depth the underlying physics providing valuable
physical insight.

A. Perturbation Theory for Resonators with

Nonlinear 2D Materials

In resonant structures with relatively weak nonlineari-
ties, perturbation theory can be used to estimate the ef-
fect of nonlinearity on the resonance characteristics (res-
onance frequency, quality factor) of the cavity.37 In the
case of a single cavity comprising bulk and sheet (2D)
nonlinear materials, the nonlinear frequency shift of a
d-dimensional system is given by34

∆ω

ω0
= −

∫

PNL ·E∗
0d

dr − j
1

ω0

∫

JNL ·E∗
0d

d−1r

∫

ε0
∂ {ωεr(ω)}

∂ω
E0 · E∗

0d
dr +

∫

µ0H0 ·H∗
0d

dr +

∫

∂σ
(1)
Im (ω)

∂ω
E0 · E∗

0d
d−1r

, (1)

where ∆ω is, in general, complex, incorporating the ef-
fect of nonlinear losses. In Eq. (1), PNL stands for the
nonlinear polarization, corresponding to dielectric bulk
nonlinearities, and JNL for the nonlinear surface current
density. Both terms can be exploited to model single-
channel effects (self-phase modulation, optical bistability,
self-pulsation) as well as multichannel processes such as
cross-phase modulation (XPM), third-harmonic genera-
tion (THG), and four-wave mixing. The JNL term allows
for naturally treating conductive nonlinear 2D materi-
als, such as graphene. In addition, the denominator in
Eq. (1) is proportional to the stored energy in the cav-
ity. It comprises dispersive electric energy and magnetic
energy terms as well as an extra term representing the
energy stored in the surface current density due to the
dispersive imaginary part of the electrical conductivity.34

This term is important when highly dispersive conductive
materials are considered such as graphene in the THz.
To specifically introduce SPM, XPM, and DFWM in

the framework, we assume three waves with frequencies
ω1, ω2, and ω3 = 2ω1 − ω2 (frequency-matching condi-
tion) and seek the third-order nonlinear polarization and
surface current density terms in the time domain

PNL = ε0χ
(3) | EEE, (2a)

J NL = σ(3) | EEE . (2b)

The tensorial nature of the linear relative permittivity
and linear electrical conductivity is hereafter omitted by
replacing the superscripts in the notation with the re-
spective subscripts. As a result, the presented analysis
stands for isotropic bulk and isotropic 2D materials that
solely interact with the tangential electric field compo-
nents: Jk = (σ1,Re + jσ1,Im)Ek,‖.
To proceed, we substitute E = Re{E1 exp(jω1t) +

E2 exp(jω2t) + E3 exp(jω3t)} in Eqs. (2). In the fre-
quency domain, the nonlinear surface current density, in
the general case, can be expressed as

JNL,µ(ωk + ωℓ + ωm) =
1

4

∑

αβγ

σ
(3)
µαβγEk,αEℓ,βEm,γ , (3)

where k, ℓ,m = {1, 2, 3} and µ, α, β, γ = {x, y, z}. In case
of negative frequencies in Eq. (3) the respective electric
field component should be replaced by its complex conju-
gate, i.e., −ωk ↔ E∗

k,α. A similar equation stands for the
nonlinear polarization term, not presented for brevity.
In the most common approach which is also the one

examined here, polarization nonlinearities are assumed

isotropic [χ
(3)
µαβγ = χ3(δµαδβγ+δµβδαγ+δµγδαβ)/3], while

the equivalent isotropic condition is applied for the non-
linear surface current density of the nonlinear 2D ma-

terial [σ
(3)
µαβγ = σ3(δµαδβγ + δµβδαγ + δµγδαβ)/3, with
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µ, α, β, γ restricted to the tangential directions and δµα
standing for the Kronecker delta].28,40,41 Then, the non-

linear current density terms are expressed as

JNL(ωk) = JSPM(ωk) + JXPM(ωk) + JDFWM(ωk). (4)

The nonlinear currents due to SPM (ωk = ωk −ωk +ωk)
and XPM (ωk = ωk − ωℓ + ωℓ = ωk − ωm + ωm) are
calculated equal to

JSPM(ωk) =
1

4
σ3

[

2(Ek,‖ ·E∗
k,‖)Ek,‖ + (Ek,‖ ·Ek,‖)E

∗
k,‖

]

, (5a)

JXPM(ωk) =
1

4
σ3

[

2(Eℓ,‖ ·E∗
ℓ,‖)Ek,‖ + 2(Ek,‖ · Eℓ,‖)E

∗
ℓ,‖ + 2(Ek,‖ · E∗

ℓ,‖)Eℓ,‖

]

+
1

4
σ3

[

2(Em,‖ · E∗
m,‖)Ek,‖ + 2(Ek,‖ ·Em,‖)E

∗
m,‖ + 2(Ek,‖ ·E∗

m,‖)Em,‖

]

. (5b)

Furthermore, new waves are generated in all three fre-
quencies ω1 = −ω1 + ω2 + ω3, ω2 = 2ω1 − ω3, and
ω3 = 2ω1 − ω2 due to paired nonlinear interactions, ex-
pressed in the here examined conventional DFWM as

JDFWM(ω1) =
1

4
σ3

[

2(E2,‖ · E3,‖)E
∗
1,‖ + 2(E∗

1,‖ ·E3,‖)E2,‖

+2(E∗
1,‖ · E2,‖)E3,‖

]

, (6a)

JDFWM(ω2) =
1

4
σ3

[

2(E1,‖ · E∗
3,‖)E1,‖

+(E1,‖ ·E1,‖)E
∗
3,‖

]

, (6b)

JDFWM(ω3) =
1

4
σ3

[

2(E1,‖ · E∗
2,‖)E1,‖

+(E1,‖ ·E1,‖)E
∗
2,‖

]

. (6c)

The respective polarization terms have entirely similar
expressions, not presented here for brevity, with the tan-
gential electric field being replaced by the full field vector.
By substituting Eqs. (5), (6), and the respective po-

larization terms in Eq. (1), we can calculate the full
nonlinear frequency shift ∆ωk, experienced by the three
resonance modes ω1, ω2, and ω3, that SPM, XPM, and
DFWM effects introduce:

∆ω1a1 =− γ11|a1|2a1 − 2γ12|a2|2a1 − 2γ13|a3|2a1

− 2β1a
∗
1a2a3, (7a)

∆ω2a2 =− γ22|a2|2a2 − 2γ21|a1|2a2 − 2γ23|a3|2a2
− β2a

2
1a

∗
3, (7b)

∆ω3a3 =− γ33|a3|2a3 − 2γ31|a1|2a3 − 2γ32|a2|2a3
− β3a

2
1a

∗
2, (7c)

where ak is the resonance amplitude, normalized so
that |ak|2 ≡ Wres,k represents the energy stored in
the cavity. To obtain Eqs. (7), the normalizations
Ek → Ekak(t)/

√

Wres,k and Hk → Hkak(t)/
√

Wres,k

are introduced.12 The nonlinear coefficients γkℓ and βk
(including both bulk and sheet contributions), describ-
ing SPM/XPM and FWM effects, respectively, are given
by

γkℓ =4

(

ωk

c0

)d

ωkc0κkℓ,bn
max
2 +

(

ωk

c0

)d+1

κkℓ,s

σmax
3,Im

ε20
, (8a)

βk =4

(

ωk

c0

)d

ωkc0κ
DFWM
k,b n

max
2 +

(

ωk

c0

)d+1

κ
DFWM
k,s

σmax
3,Im

ε20
,

(8b)

with the dimensionless nonlinear feedback parameters for
bulk materials14,34,39,42 calculated through

κkk,b =

(

c0
ωk

)d
1

3

∫

n2n2

(

2|Ek|4 + |Ek ·Ek|2
)

ddr

16

ε20
W 2

res,kn
max
2

, (9a)

κkℓ,b =

(

c0
ωk

)d
1

3

∫

n2n2

(

|Ek|2|Eℓ|2 + |Ek · Eℓ|2 + |Ek · E∗
ℓ |2

)

ddr

16

ε20
Wres,kWres,ℓn

max
2

, (9b)
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κDFWM
1,b =

(

c0
ω1

)d
1

3

∫

n2n2 [2(E
∗
1 · E3)(E

∗
1 · E2) + (E∗

1 · E∗
1)(E2 ·E3)] d
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16

ε20
Wres,1W

1/2
res,2W

1/2
res,3n

max
2

, (9c)

and for sheet materials through

κkk,s =

(

c0
ωk

)d+1

∫

σ3,Im
(

2|Ek,‖|4 + |Ek,‖ · Ek,‖|2
)

dd−1r

16

ε20
W 2

res,kσ
max
3,Im

, (10a)

κkℓ,s =

(

c0
ωk

)d+1

∫

σ3,Im

(

|Ek,‖|2|Eℓ,‖|2 + |Ek,‖ ·Eℓ,‖|2 + |Ek,‖ · E∗
ℓ,‖|2

)

dd−1r

16

ε20
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3,Im

, (10b)

κDFWM
1,s =

(

c0
ω1

)d+1

∫

σ3,Im

[

2(E∗
1,‖ · E3,‖)(E

∗
1,‖ · E2,‖) + (E∗

1,‖ · E∗
1,‖)(E2,‖ · E3,‖)

]

dd−1r

16

ε20
Wres,1W

1/2
res,2W

1/2
res,3σ

max
3,Im

. (10c)

The SPM contribution is enclosed in the κkk nonlinear
feedback parameters, while XPM is described by κkℓ and
DFWM by κDFWM

k . Two-photon absorption (TPA) is
considered negligible at THz frequencies. It is important
to note that κkℓ are by definition real [resulting also in
real γkℓ in the absence of nonlinear losses, which is the
case of Eq. (8)]; however, κDFWM

k (βk) are in general
complex. Furthermore, it holds that

κDFWM
1,b =

(

ω2

ω1

)d

(κDFWM
2,b )∗ =

(

ω3

ω1

)d

(κDFWM
3,b )∗,

(11a)

κDFWM
1,s =

(

ω2

ω1

)d+1

(κDFWM
2,s )∗ =

(

ω2

ω1

)d+1

(κDFWM
3,s )∗,

(11b)

for bulk and sheet materials, respectively. The aforemen-
tioned equalities are reflected in the nonlinear DFWM
parameters βk, i.e., it holds,

β1,b
ω1

=
β∗
2,b

ω2
=
β∗
3,b

ω3
, (12a)

β1,s = β∗
2,s = β∗

3,s. (12b)

Finally, the stored energy in the cavity at each frequency
consists of three terms34 and is given by

Wres,k =
1

4

∫

∂{ωε0εr}
∂ω

∣

∣

∣

∣

ω=ωk

|Ek|2ddr

+
1

4

∫

µ0|Hk|2ddr

+
1

4

∫

∂σ1,Im
∂ω

∣

∣

∣

∣

ω=ωk

|Ek,‖|2dd−1r.

(13)

B. Multichannel Temporal Coupled-Mode Theory

The nonlinear resonance frequency shifts ∆ωk in
Eqs. (7) can be readily incorporated in the CMT frame-
work. Assuming that the three examined frequencies lie
in the vicinity of three separate resonances of a directly-
coupled standing-wave cavity, we can write the amplitude
rate equations as

da1
dt

=j
(

ω1 − γ11|a1|2 − 2γ12|a2|2 − 2γ13|a3|2
)

a1

−j2β1a∗1a2a3 −
(

1

τi,1
+

1

τe,1

)

a1 +

√

1

τe,1
sin,1,

(14a)

da2
dt

=j
(

ω2 − 2γ21|a1|2 − γ22|a2|2 − 2γ23|a3|2
)

a2

−jβ2a21a∗3 −
(

1

τi,2
+

1

τe,2

)

a2 +

√

1

τe,2
sin,2, (14b)

da3
dt

=j
(

ω3 − 2γ31|a1|2 − 2γ32|a3|2 − γ33|a3|2
)

a3

−jβ3a21a∗2 −
(

1

τi,3
+

1

τe,3

)

a3 +

√

1

τe,3
sin,3, (14c)

where τi, τe are the cavity photon lifetimes corresponding
to intrinsic (resistive and radiation) and external (cou-
pling) loss, with the respective quality factors given by
Q = ωτ/2. In addition, the output (transmitted) and
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reflected waves are calculated through43

sout,k =

√

1

τe,k
ak, (15a)

sref,k = −sin,k +
√

1

τe,k
ak, (15b)

respectively, where s are normalized so that |s|2 expresses
the guided power. Other type of resonators and/or cou-
pling schemes may be easily incorporated by using the ap-
propriate driving term, sin, and the corresponding equa-
tion for the output waves.38 The temporal CMT frame-
work of Eqs. (14) describes the temporal evolution of the
stored energy in a resonant system. In straight analogy,
there is a spatial CMT framework, where space is the
dynamic parameter instead of time, which can describe
the spatial evolution of the guided power in guided-wave
systems. Such a framework has been proposed in Ref. 30
for graphene-comprising, silicon-based waveguides.
Typically, no input wave is introduced in DFWM at

the generated frequency ω3, i.e., sin,3 = 0. Nevertheless,
we include this parameter in the CMT equations to allow
for the general case, also referred to as parametric am-
plification. Furthermore, we note that for an uncoupled
and lossless system after ignoring SPM and XPM, the
conservation of energy in Eqs. (14) yields

2β1 = β∗
2 + β∗

3 . (16)

Since losses, SPM, and XPM are independent of DFWM,
Eq. (16) still holds for the full nonlinear system. This is
also confirmed by the definitions of the nonlinear param-
eters βk, Eqs. (8)-(10).

Equations (14) and (15) are usually normalized with
respect to the phenomenon under study. Here, we choose
to normalize with respect to the β3a

2
1a

∗
2 term,44 i.e., the

result of the DFWM process. Thus, we define

ũk =
√

τe,3|β3|ãk, (17a)

ψ̃k =
√

τ2e,3|β3|s̃k, (17b)

and t′ = t/τe,3, while we let ak(t) = ãk(t) exp{jωop
k t} and

sk(t) = s̃k(t) exp{jωop
k t}, marking with ωop

k the operat-
ing frequency of the k-th wave that is in general different
from the respective resonance frequency of the cavity;
obviously ωop

3 = 2ωop
1 − ωop

2 , as dictated by the mix-
ing process. The above normalization implies that the
input/output wave power is normalized with respect to
the characteristic power

P3 =
1

τ2e,3|β3|
(18)

of the system. The normalization eventually leads to

τe,k
τe,3

dũk
dt′

=j
(

−δk − rSPM,k|ũk|2 − rXPM,kℓ|ũℓ|2 − rXPM,km|ũm|2
)

ũk − jrDFWM,kΦk(ũ1, ũ2, ũ3)

− (1 + rQ,k)ũk +

√

τe,k
τe,3

ψ̃in,k, (19a)

ψ̃out,k =

√

τe,3
τe,k

ũk, (19b)

ψ̃ref,k =− ψ̃in,k +

√

τe,3
τe,k

ũk. (19c)

The normalization parameters appearing in Eqs. (19) are:

• the resonance frequency detuning δk = (ωop
k − ωk)τe,k,

• the quality factor ratio rQ,k = τe,k/τi,k,

• the SPM intensity ratio rSPM,k = γkkτe,k/(|β3|τe,3),
• the XPM intensity ratio rXPM,kℓ = 2γkℓτe,k/(|β3|τe,3),
• the DFWM intensity ratio rDFWM,k = βkτe,k/(|β3|τe,3).
Note that rDFWM,3 6= 1, in contrast to what one might
expect, since this parameter quantifies the contribution
of both the real and imaginary part of β3. Neverthe-
less, it turns out that only the absolute value of rDFWM,3

(which always equals unity) affects the intensity of the

produced wave. Finally, we have introduced for brevity
the function Φk(ũ1, ũ2, ũ3), defined as

Φk(ũ1, ũ2, ũ3) =







2ũ∗1ũ2ũ3, k = 1
ũ21ũ

∗
3, k = 2

ũ21ũ
∗
2, k = 3

. (20)

III. DEGENERATE FOUR-WAVE MIXING IN A

GRAPHENE PLASMON-POLARITON

RESONATOR

Next, we utilize the developed framework to study de-
generate four-wave mixing in a graphene-based standing-
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x
y

z

g

Pump ( )w1
Signal ( )w2

Idler ( )w3

g

L

graphene Pump ( )w1

Signal ( )w2

Idler ( )w3

FIG. 1. Graphene plasmon-polariton standing-wave resonator
of length L, directly-coupled with two semi-infinite graphene
sheets, serving as the input/output waveguides through cou-
pling gaps of length g. The nonlinear mixing of signal
and pump waves generates a third wave (idler) through the
DFWM process. Pale-colored waves carry comparable power
with bright-colored waves but they are not presented in any
illustration of the article. In addition, the pale-colored back-
ward propagating idler wave at ω3 is not accounted for when
calculating the conversion efficiency [Eq. (21)].

wave resonator in the THz band. The resonator is formed
by an infinitely-wide graphene strip of length L, cou-
pled with two graphene sheets, serving as the feeding
waveguides, through coupling gaps of length g, Fig. 1.
Due to the uniformity along the z-axis, the structure is
studied using 2D electromagnetic simulations. The lin-
ear properties of graphene are modeled using the Kubo
formula,28 applied for a Fermi level of µc = 0.3 eV, ren-
dering the intraband transitions the sole absorption pro-
cess due to the low photon energy at THz frequencies.
Taking into account the strong Drude-like dispersion of
the linear conductivity is essential for correctly estimat-
ing the quality factor and the free-spectral range (FSR)
of the resonator as well as the extra stored energy due
to the surface current34 [Eq. (13)]. Note that the non-
linear conductivity of graphene also exhibits dispersion
(∝ ω−3).25,34

Before utilizing the CMT framework [Eqs. (19)] for
studying the nonlinear response, we should specify the
coefficients entering in the rate equations, i.e., the lin-
ear resonance characteristics of the cavity as well as
the nonlinear feedback parameters [Eqs. (10)]. This is
performed by conducting linear eigenvalue simulations
with the finite element method (FEM) using COMSOL
Multiphysics R©. For the proposed structure, we choose to
work with high order modes to limit radiation loss and
more specifically the 11th (ω3, idler), 12

th (ω1, pump),
and 13th (ω2, signal) order modes of an L = 72 µm
resonator. In Fig. 2, the Ex-components of the reso-
nance modes along with the resonance frequencies (ly-
ing around 5 THz) and the respective intrinsic quality
factors are depicted. Note that the correct estimation
of the intrinsic quality factor is performed by using its
definition Qi,k = ωkWres,k/(Pres,k + Prad,k) in a coupled
eigenvalue problem, after appropriately limiting the in-

Re{ }Exm = 12(a)

10 mm

f1 = 5.0285 THz
Qi,1 = 901

Re{ }Exm = 13(b)

10 mm

f2 = 5.2429 THz
Qi,2 = 937

Re{ }Exm = 11(c)

10 mm

f3 = 4.8062 THz
Qi,3 = 811

-

+

0

Pump

Signal

Idler
-

+

0

-

+

0

FIG. 2. Field plot (Ex-component) of the resonance mode
profiles supported by the graphene plasmon-polariton res-
onator. (a) m = 12 (pump wave), (b) m = 13 (signal
wave), and (c) m = 11 (idler wave). It is noted that
the three resonance frequencies are not exactly frequency-
matched (ω3 6= 2ω1 − ω2) due to material dispersion.

tegration domain of the numerator to exclude the energy
stored in the bus waveguides and also limiting the inte-
gration domain of the denominator to exclude radiation
outflow from the waveguides’ ports. This calculation is
more accurate than using an uncoupled eigenvalue prob-
lem to estimate Qi since a significant part of the radi-
ation couples with the bus waveguide being, after all,
part of the coupling (external) loss. Moreover, the en-
ergy in the numerator is calculated using Eq. (13) to
correctly take into account the dispersion in graphene,
which if neglected, would have led to Q-factors equal to
approximately half of the correct value. Quality factors
calculated using this approach result in excellent recon-
struction of the Lorentzian-shaped transmission curves
obtained by linear time-harmonic simulations. This val-
idates as well that the incident power couples efficiently
(without significant radiation leakage from the waveg-
uide) to the resonant mode, i.e., the coupling process
between input waveguide and resonator is almost free
from scattering losses, something that is attributed to the
small coupling gaps and the geometric similarity between
their cross-sections. Accordingly, the coupling losses are
calculated from the same eigenvalue problem using the
respective definition Qe,k = ωkWres,k/Pext,k and, as ex-
pected, depend on the coupling gap g. Pext represents
the guided power on both waveguides and is calculated
by appropriately integrating the power density of the
supported surface-plasmon modes. For g = 1 µm, the
external quality factors are found equal to Qe,1 = 326,
Qe,2 = 386, and Qe,3 = 267, resulting in quality fac-
tor ratios rQ,1 = 0.36, rQ,2 = 0.41, and rQ,3 = 0.33,
respectively. Since the characteristic power is inversely
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proportional to the external quality factor, higher Qe val-
ues (larger gaps) would lead to lower power requirements.
Nevertheless, they also lead to higher rQ values, suppress-
ing the maximum output on resonance (being optimal for
rQ = 0), thus limiting the overall performance. Finally,
κDFWM
3,s = 0.3044 + j0.0098, resulting in a characteristic

power of P3 = 0.606 mW/µm.
In order to validate the results obtained with the CMT

framework, a second simulation strategy is introduced.
Two linear harmonic propagation problems are solved at
the resonant frequencies ωop

1 = ω1 and ωop
2 = ω2 and

the resulting field distributions are used to specify a sur-
face current source term on graphene through Eq. (6c).
In turn, this nonlinear source term drives a third time-
harmonic propagation simulation at ωop

3 = 2ωop
1 −ωop

2 .23

In general, ωop
3 6= ω3, reflecting a nonideal frequency-

matching condition. This can be due to material dis-
persion, as in our case, waveguide dispersion (when a
waveguide cross-section with at least one finite dimension
is involved) or both, constituting a common problem in
FWM resonant photonic circuits.7–9 Note that this strat-
egy, which we term “full-wave” and consists of three in-

dependent linear full-wave simulations, cannot take into
account neither the power lost from both pump and sig-
nal waves due to frequency conversion nor the power gen-
erated through the nonlinear interactions between pump-
idler and signal-idler waves. Thus, it provides an approx-
imation of the actual system performance, remaining,
nevertheless, highly accurate for moderate conversion ef-
ficiencies. In the CMT framework, these conditions can
be replicated by setting β1 = β2 = 0, which consequently
violates the energy conservation condition of Eq. (16).
We refer to this approximation as the undepleted pump

case in contrast to the depleted pump case where all en-
ergy exchange processes are allowed.
In Fig. 3, we plot the conversion efficiency of the

DFWM process defined as

CE = 10 log

(

pout,3
pin,1 + pin,2

)

, (21)

for the system under study (p = |ψ̃|2) and pout,3 exclu-
sively refers to the forward-propagating idler. We include
both the depleted and undepleted pump scenarios; the
depleted pump case is studied with CMT (black dashed
curve), while for the undepleted pump case we compare
CMT (blue solid line) with the full-wave approach (red
markers). Note that the results between the depleted and
the undepleted pump case coincide for low conversion ef-
ficiencies but start deviating for higher CEs (> −22 dB),
as anticipated. A non-monotonic behavior of the CE
curve appears for the depleted pump scenario because as
the idler intensity increases, the down-conversion process
is boosted, thus setting an upper bound on the achievable
conversion efficiency. Importantly, CMT and full-wave
approaches are in excellent agreement for the undepleted
pump scenario, validating that the proposed framework
is capable of accurately modeling the nonlinear response.
Finally, let us note that throughout Sec. III the self and
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FIG. 3. Conversion efficiency of the DFWM process for the
depleted (black dashed curve) and the undepleted pump case
(CMT: blue solid curve, FEM: red markers). Depleted and
undepleted pump calculations agree well for input powers as
high as pin,1 = 1. CMT and full-wave calculations for the
undepleted pump case are in excellent agreement, validating
the developed framework. Self and cross nonlinear resonance
frequency shifts have been neglected (γkℓ = 0 in the CMT
context).

cross nonlinear resonance frequency shifts arising from
the Kerr effect have been neglected (γkℓ = 0 in the CMT
context), allowing for comparing with the full-wave ap-
proach to validate the developed framework. In the next
section, we thoroughly study their impact on the conver-
sion efficiency of the DFWM process.

Regarding the device design and performance, pout,3
might also be considered as the sum of the power that
outflows from both access waveguides. In that case, the
total output power at ω3 is doubled because of the res-
onator symmetry, equivalently resulting in a 3 dB in-
crease of the conversion efficiency. In an alternative ap-
proach, a different system with a single feeding waveg-
uide may be considered; input and output ports will be
represented by the same physical waveguide. In that
case, although Qi remains approximately constant (a
small reduction is expected because of the extra radi-
ation from the uncoupled edge of the resonator), Qe and,
thus, rQ are doubled, limiting the observed CE because
of the poorer coupling of ω1 and ω2 waves. Neverthe-
less, P3 ∝ 1/Q2

e is reduced four times with respect to the
original system’s characteristic power. Changing appro-
priately the coupling gap g to restore the original value of
Qe leads to CEs comparable to those of the double feed
system when considering the idler power flowing both
forward and backwards.
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FIG. 4. Conversion efficiency of the DFWM process in the
pin,1 − pin,2 space. (a) Undepleted pump case, (b) depleted
pump case, and (c) full model including the nonlinear reso-
nance frequency shifts due to SPM and XPM. In (b) max-
imum CE (star marker) equals −12.5 dB for pin,1 = 7.0
and pin,2 = 0.5. In (c) maximum CE (star marker) equals
−31.5 dB for pin,1 = 1.0 and pin,2 = 0.6.

IV. IMPACT OF NONLINEAR RESONANCE

FREQUENCY SHIFTS AND IDENTIFICATION

OF OPERATION REGIMES

In this section, we analyze in depth the performance
of the graphene resonator by studing the effect of the
nonlinear resonance frequency shifts on the conversion
efficiency of the DFWM process. Moreover, we iden-
tify different operating regimes, which manifest as the
power or the detuning of the input waves is varied. Ini-
tially, we seek the optimum power levels for the input
waves at ωop

1 and ωop
2 that lead to the highest CE. For

the undepleted pump case, conversion efficiency mono-
tonically increases with input power [Fig. 4(a)], as al-
ready seen in Fig. 3. In addition, from Fig. 4(a) one
sees that favoring the ωop

1 or ωop
2 waves leads to similar

CEs. However, the conditions for the undepleted pump
approximation do not hold as the CE increases. Opting

TABLE I. Nonlinear parameters of the resonant system,
as used in Eqs. (19) to produce the results illustrated in
Figs. 4(c) and 5.

SPM XPM DFWM
rSPM,1 = 3.47 rXPM,12 = 5.06 rDFWM,1 = 1.17− j0.038

rXPM,13 = 4.24
rSPM,2 = 4.64 rXPM,21 = 5.71 rDFWM,2 = 1.32 + j0.042

rXPM,23 = 5.20
rSPM,3 = 2.47 rXPM,31 = 3.62 rDFWM,3 = 0.99 + j0.032

rXPM,32 = 3.94

for the more realistic depleted pump case, there exists
an optimal input power pair that leads to maximum CE
[Figs. 3 and 4(b)] because of the energy exchange be-
tween pump, signal, and idler waves. Using the simple
(yet most favorable) conditions δ1 = δ2 = 0 for the op-
erating frequencies of the two input waves (resulting in
δ3 = 1.08 for the produced wave due to graphene con-
ductivity dispersion; waveguide dispersion is absent), we
find a CE of −12.5 dB for Pin,1 = 7.0P3 = 4.242 mW/µm
and Pin,2 = 0.5P3 = 0.303 mW/µm, Fig. 4(b). The
optimal CE point is marked with a star in Fig. 4(b)
and lies near the limit of an unstable operating region
(appearing due to a system bifurcation), shown as the
white area in Fig. 4(b). In that region, a phenomenon
commonly referred to as limit cycles appears,14,15 result-
ing in a pulsed-pattern output of the ωop

3 wave, despite
the continuous wave (CW) feed at ωop

1 and ωop
2 [inset of

Fig. 4(b)]. Limit cycles area is determined by the inabil-
ity to obtain a solution using the CW version of the CMT
equations. The pulsed-pattern output [seen in the inset
of Fig. 4(b)] is then identified by solving the dynamic
version of the CMT equations.

In an even more realistic treatment, the effect of the
nonlinear resonance frequency shifts due to SPM and
XPM should be taken into account (γkℓ 6= 0 in the
CMT framework). Based on the linear eigenvalue sim-
ulations, the intensity factors for the various nonlinear
effects appearing in the resonant system are calculated
and listed in Table I. By substituting these values in
Eqs. (19), we can calculate the conversion efficiency of
the DFWM process under realistic conditions, Fig. 4(c).
Compared to Figs. 4(a) and (b), the maximum CE is con-
siderably lower. More specifically, for Pin,1 = 1.0P3 =
0.606 mW/µm and Pin,2 = 0.6P3 = 0.364 mW/µm
(Pin,1 = 3.6 mW, Pin,2 = 2.2 mW for a reference 3D
system that is λSPP/2 wide), one finds the maximum CE
being equal to −31.5 dB. This CE drop is due to SPM
and XPM shifting the cavity resonances away from the
respective operating frequencies, leading to non-zero de-
tuning and, as a consequence, to sub-optimal light-cavity
coupling.

As a remedy to this problem, we can pre-shift the op-
erating frequencies of the input waves with respect to the
unperturbed resonance frequencies to accommodate for
the red-shifting induced by the Kerr effect.13,14 Naturally,
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FIG. 5. Conversion efficiency of the DFWM process in the
δ1 − δ2 space when all effects are taken into account. The
power levels of the input waves are pin,1 = 1.0 and pin,2 = 0.6.
A maximum CE of −17.6 dB is obtained for δ1 = −3.10 and
δ2 = −2.35.

shifting δ1 and δ2 inevitably affects δ3 as dictated by the
DFWM frequency condition ωop

3 = 2ωop
1 − ωop

2 . Addi-
tionally, one should keep in mind that the optimum pre-
shifting is not the same for each pair of pin,1 − pin,2 since
the Kerr-induced nonlinear resonance frequency shift is
power dependent.42 We set Pin,1 = 1.0P3 and Pin,2 =
0.6P3, which was the optimum pair for δ1 = δ2 = 0,
and seek the combination of δ1 and δ2 that further max-
imizes CE. The results are shown in Fig. 5. Notably, for
δ1 = −3.10 and δ2 = −2.35 (the star-marked point), a
CE of −17.6 dB is obtained, constituting a significant
improvement. In fact, we have managed to almost com-
pletely compensate for the impairment introduced by the
nonlinear resonance frequency shifts, confronting a prob-
lem commonly encountered in experimental works.5,7,8,10

The compensation is not complete since the input power
combination leading to maximum CE is different in the
presence or absence of SPM/XPM. Thus, the input power
pair should be further fine-tuned for achieving larger
compensation. In addition, there exists a region (marked
with white) where optical bistability manifests [initially

appearing for45 δk < −(1 + rQ,k)
√
3] and higher CEs are

anticipated. Nevertheless, we do not opt for operating in
the bistability region since, along with the high-output
state, there exists a low-output state where the system

may evolve into, negatively affecting the overall perfor-
mance.

V. CONCLUSION

To summarize, we have developed a rigorous math-
ematical framework that can analyze single- and mul-
tichannel nonlinear processes in resonant systems com-
prising sheet (2D) and bulk materials. Using the pro-
posed framework, we have thoroughly studied degener-
ate four-wave mixing in a graphene plasmon-polariton
standing-wave resonant structure operating in the THz
frequency range. More specifically, we have determined
the optimum operating point leading to maximum con-
version efficiency and numerically identified the differ-
ent operating regimes (giving rise to optical bistability
or limit cycles behavior) appearing when varying the
power level of the input waves or their operating fre-
quency. The field enhancement offered by the tightly
confined graphene plasmon-polaritons allows for obtain-
ing high conversion efficiency for the DFWM process, in-
dicating the potential of graphene for on-chip nonlinear
photonic functionalities. Specifically for our design, a CE
of −17.6 dB (−14.6 dB accounting for idler propagating
both in the forward and backward direction) is obtained
for input powers of Pin,1 = 0.606 mW/µm and Pin,2 =
0.364 mW/µm, using feeding frequencies with normal-
ized detunings equal to δ1 = −3.10 and δ2 = −2.35.
Our work paves the way for studying diverse multichan-
nel phenomena (frequency generation, frequency mixing,
and parametric amplification) in resonant systems com-
prising novel 2D materials (graphene, transition metal
dichalcogenides, hexagonal boron nitride, black phospho-
rus, etc.), thus bringing these exciting materials one step
closer to practical nonlinear applications.
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