OSA Advanced Photonics Congress

13 – 16 July 2020 Eastern Daylight Time (EDT), GMT-04:00

Non-reciprocal Silicon Photonic Coupler Exploiting Graphene Saturable Absorption

Dimitrios Chatzidimitriou*, Alexandros Pitilakis, Traianos Yioultsis, Emmanouil Kriezis

*dchatzid@auth.gr

Aristotle University of Thessaloniki School of Electrical and Computer Engineering

AUTH Photonics Group http://photonics.ee.auth.gr/

AN OSA VIRTUAL MEETING

Introduction

Demand for on chip integrated optical isolators

- Magneto-optic components are bulky/expensive/hard to integrate.
- ✓ **Non-linear non-reciprocity** : Non-linearity + asymmetry breaks reciprocity.
 - Common implementation: Resonant components + Kerr effect.
 - ***** Resonators: **high isolation** but **low bandwidth.**
- □ This work: Directional coupler + Saturable Absorption (SA).
 - The asymmetry is enhanced by the Exceptional Point (EP)

of the non-Hermitian (lossy) coupler.

- ✤ Non-linearity (SA) is provided by Graphene.
- \checkmark Compatible **integration** with SOI platforms.
- ✓ Relaxed **bandwidth** limiting factors.

Concept (1/2) – The Linear Regime

- □ Lossy Photonic Coupler
 - Two identical waveguides (same phase constant β_0)
 - Top waveguide has saturable losses (non-linear).
 - Bottom waveguide is lossless (linear).
 - Two port configuration.
 - Length = Coupling length L_c
- □ Linear Regime (without SA)
 - Super-modes $\beta = \beta_0 j\frac{\alpha}{2} \pm \sqrt{|\kappa|^2 (\frac{\alpha}{2})^2}$ Exceptional Point at $\frac{\alpha}{2|\kappa|} = 1$.

 - When $\alpha/2|\kappa| > 1$ one supermode is lossy and the other is lossless (asymptotically).
 - The lossy supermode vanishes very fast: Light remains in the lossless waveguide.

Concept (2/2) – The Non-linear (SA) Regime

$$\alpha \rightarrow \frac{\alpha}{1+|A_1|^2/|A_{\rm sat}|^2}$$

Assume that for $|A_1| \ll |A_{sat}| \rightarrow \frac{\alpha}{2|\kappa|} \gg 1$ and half-duplex operation.

- □ High-power excitation from the lossy (SA) waveguide:
 - High overlap with the non-linear waveguide.
 - Due to SA: $\alpha \to 0$, $\alpha/2|\kappa| < 1$. **Below EP**.
 - Light can couple to opposite waveguide (forward).

Concept (2/2) – The Non-linear (SA) Regime

$$\alpha \rightarrow \frac{\alpha}{1 + |A_1|^2/|A_{\text{sat}}|^2}$$

Assume that for $|A_1| \ll |A_{sat}| \rightarrow \frac{\alpha}{2|\kappa|} \gg 1$ and half-duplex operation.

□ High-power excitation **from the lossless waveguide**:

- Little overlap with the non-linear waveguide
- Losses are **not saturated**, $\alpha/2|\kappa| \gg 1$. **Above EP**.
- Light cannot couple to opposite waveguide (backward).

Concept Results – Coupled Mode Theory

Concept Results – Coupled Mode Theory

Concept Results – Coupled Mode Theory

Conclusions from concept model:

- ✓ Increasing $a/2|\kappa|$ increases NRIR but also increases NL threshold
 - Higher losses are better!
 - Small $|\kappa|$ leads to large devices
- Ideal performance (high transmission and/or perfect isolation) is inherently prohibited
 - A compromise must be made:
 - Narrow NRIR or high NL threshold
- At low and at very high powers the device is again reciprocal

Physical implementation with graphene (1/3)

□ Graphene monolayer characteristics at 1550 nm

- Linear conductivity $\sigma_1 = \sigma_{intra} + \sigma_{inter}$.
- Saturation of the **interband conductivity**.
- $|\mu_c| < 0.4 \text{ eV}$, ideally totally saturable.
- SA has lower power threshold than other

Aristotle University of Thessaloniki School of Electrical and Computer Engineering

Physical implementation with graphene (3/3)

- □ Pair of identical **silicon slot waveguides**.
 - Left waveguide overlaid with two graphene monolayers
 - Graphene is **unbiased** $\mu_c = 0 \text{ eV}$, so that $\sigma \approx \sigma_{\text{inter}} \approx 122 \text{ }\mu\text{S}$
- □ The dimensions chosen ensure that:
 - Field is mainly guided in the slot area: high confinement.
 - TE polarization parallel to graphene: high interaction.

- □ Waveguide dimensions:
 - Height = 180 nm
 - Width = 360 nm
 - Slot = 40 nm
 - Gap = 640 nm
- □ Parameters
 - Coupling length $L_c = 0.5\pi/|\kappa| = 800 \ \mu m$
 - Unsaturated losses $\alpha = 0.42 \text{ dB}/\mu\text{m}$

CMT parameter

 $\alpha/2|\kappa| \approx 12$

$$\frac{\partial A_1}{\partial z} = \alpha_{\text{sat},1} (|A_1|^2) A_1 + \alpha_{\text{nsat},1} A_1 + i\kappa A_2,$$
$$\frac{\partial A_2}{\partial z} = \alpha_{\text{nsat},2} A_2 + i\kappa A_1,$$

- Graphene saturation intensity $I_{sat} = 1 \text{ MW/cm}^2$
- Non-saturable losses $a_{nsat,i} = 0$
- Coupling coefficient $\kappa = \pi/2L_c$
- Normalization constant N_i
 - Each equation is derived for a specific waveguide/mode (uncoupled) and then coupled heuristically
 - Approximation stands due to weak coupling

$$\frac{\partial A_1}{\partial z} = \alpha_{\text{sat},1} (|A_1|^2) A_1 + \alpha_{\text{nsat},1} A_1 + i\kappa A_2,$$
$$\frac{\partial A_2}{\partial z} = \alpha_{\text{nsat},2} A_2 + i\kappa A_1,$$

- Graphene saturation intensity $I_{sat} = 1 \text{ MW/cm}^2$
- Non-saturable losses $a_{nsat,i} = 0$
- Coupling coefficient $\kappa = \pi/2L_c$
- Normalization constant N_i
 - Each equation is derived for a specific waveguide/mode (uncoupled) and then coupled heuristically
 - Approximation stands due to weak coupling

$$\frac{\partial A_1}{\partial z} = \alpha_{\text{sat},1} (|A_1|^2) A_1 + \alpha_{\text{nsat},1} A_1 + i\kappa A_2,$$
$$\frac{\partial A_2}{\partial z} = \alpha_{\text{nsat},2} A_2 + i\kappa A_1,$$

- Graphene saturation intensity $I_{sat} = 1 \text{ MW/cm}^2$
- Non-saturable losses $a_{nsat,i} = 0$
- Coupling coefficient $\kappa = \pi/2L_c$
- Normalization constant N_i
 - Each equation is derived for a specific waveguide/mode (uncoupled) and then coupled heuristically
 - Approximation stands due to weak coupling

$$\frac{\partial A_1}{\partial z} = \alpha_{\text{sat},1} (|A_1|^2) A_1 + \alpha_{\text{nsat},1} A_1 + i\kappa A_2,$$

$$\frac{\partial A_2}{\partial z} = \alpha_{\text{nsat},2} A_2 + i\kappa A_1, \qquad +i\gamma_s |A_1|^2 A_1$$

• Graphene saturation intensity
$$I_{sat} = 1 \text{ MW/cm}^2$$

- Non-saturable losses $a_{nsat,i} = 0$
- Coupling coefficient $\kappa = \pi/2L_c$
- Normalization constant N_i
 - Each equation is derived for a specific waveguide/mode (uncoupled) and then coupled heuristically
 - Approximation stands due to weak coupling

Validating coupled NLSE

Beam Propagation Method (BPM)

Numerical step-wise propagation of an input excitation along a slowly varying waveguide

- ✓ Frequency-domain (CW) method
- Cross-section (xy plane): Hybrid higher-order vector/nodal finite-elements (FEM)
- ✓ z-propagation: Finite-difference Crank-Nicolson stepping scheme

Non-linear BPM

- Material EM properties (n for bulk materials and σ for sheet materials) depend on E-field intensity
- Graphene SA: $\Delta \sigma(x, y, z) = -\sigma_{1,inter}(x, y) \cdot I_n/(1 + I_n)$ • Normalized intensity: $I_n = \left|\vec{E}_{||}(x, y, z)\right|^2/(2Z_0 I_{sat})$
- In-step iterations for stability (2-3 are enough)

Validating coupled NLSE

Beam Propagation Method (BPM)

Numerical step-wise propagation of an input excitation along a slowly varying waveguide

- ✓ Frequency-domain (CW) method
- Cross-section (xy plane): Hybrid higher-order vector/nodal finite-elements (FEM)
- ✓ z-propagation: Finite-difference Crank-Nicolson stepping scheme

Non-linear BPM

- Material EM properties (n for bulk materials and σ for sheet materials) depend on E-field intensity
- Graphene SA: $\Delta \sigma(x, y, z) = -\sigma_{1,inter}(x, y) \cdot I_n/(1 + I_n)$ • Normalized intensity: $I_n = \left|\vec{E}_{||}(x, y, z)\right|^2/(2Z_0I_{sat})$
- In-step iterations for stability (2-3 are enough)

Excellent agreement (0.2 dB) w/ NLSE

Summary and Conclusions

To summarize:

□ Studied the **breaking of reciprocity** by utilizing EPs and SA.

Proposed a physical implementation using a silicon slot waveguide (SOI platform) and graphene

2 graphene layers (at $\mu_c \sim 0 \text{ eV}$) $\xrightarrow{\text{TE}}$ Air Si SiO₂ $\xrightarrow{\text{gap}}$ slot $L_c \xrightarrow{} L_c$ $\xrightarrow{} Z_1 \xrightarrow{g_2} -10$ $\xrightarrow{} NRIR$

Conclusions:

- □ SA combined with EPs as an alternative to the Kerr effect.
 - Lower power threshold than the Kerr effect.
 - Compatible with standard integration techniques.
 - Bandwidth is limited mainly by waveguide coupling!

European Social Fund

Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

